Skip to main content
Log in

Is There a Role for MDR1, EPHX1 and Protein Z Gene Variants in Modulation of Warfarin Dosage? A Study on a Cohort of the Egyptian Population

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

There is considerable inter-individual variability in warfarin dosages necessary to achieve target therapeutic anticoagulation. Polymorphisms in genes, which master warfarin pharmacokinetics and pharmacodynamics, might influence warfarin dose variation. Genes encoding drug transporters, such as human multidrug resistance (MDR1), as well as epoxide hydrolase 1 (EPHX1), which is a putative subunit of the vitamin K epoxide reductase, and Protein Z (PZ), which is a vitamin K-dependent plasma glycoprotein, are among those candidate genes.

Objective

The purpose of this study was to investigate the contribution of MDR1 C3435T, EPHX1 H139R and PZ A-13G gene polymorphisms in warfarin dose variation in a cohort of the Egyptian population.

Methods

Eighty-four patients whose international normalized ratio (INR) was in the range of 2–3, 41 males and 43 females, with a mean (±SD) age of 40.9 (13.3) years were recruited into this study. MDR1 C3435T, EPHX1 H139R and PZ A-13G gene polymorphisms were detected by polymerase chain reaction-restriction fragment length polymorphism. Primarily, linear regression analysis, including the variables age, gender, MDR1 C3435T, EPHX1 H139R and combined MDR1 C3435T, EPHX1 H139R and PZ A-13G genotypes, was used to assess the effective factors for warfarin maintenance dose. Secondly, the previously examined cytochrome P450 (CYP) 2C9 A1075C and vitamin K epoxide reductase complex subunit 1 (VKORC1) C1173T were added to the regression analysis.

Results

Warfarin dose/week was not influenced by each of the MDR1 C3435T, EPHX1 H139R, and PZ A-13G gene polymorphisms when examined separately. However, when these single nucleotide polymorphisms (SNPs) were combined, MDR1 TT/EPHX1 RH,RR/PZ AA subjects showed statistically significant increase in warfarin dose/week when compared with MDR1 CC/EPHX1 RH,RR/PZ AA subjects [median (25th–75th percentiles): 49.0 (42.0–59.5) vs. 35.0 (24.5–42.0) mg/week, respectively] (p = 0.014). In contrast, in the presence of wild-type EPHX1 HH, there was a decrease in warfarin dose/week in MDR1 TT subjects when compared with CT and CC subjects [median (25th–75th percentiles): 22.0 (17.5–30.6), 42.0 (35.0–49.0) and 42.0 (28.0–54.3) mg/week, respectively] (p = 0.005 and 0.030, respectively). Age had a significant contribution (p = 0.048) to the overall variability in warfarin dose. Calculated weekly dose = 52.928 − (0.289 × age) + (9.709 × combined genotype). The multivariate linear regression equation of warfarin maintenance dose accounted for about 8 % of variation in dose (R 2 = 0.079), age accounted for 5 % of variation, while combined genotypes added the extra 3 %. However, the new regression equation accounted for 20.9 % of variation in dose. Age accounted for 5 %, while VKORC1 C1173T accounted for an extra 13 % of variation and MDR1 C3435T accounted for the remaining 3 % of variation. Calculated dose = 64.909 − (0.282 × age) − (13.390 × VKORC1) − (7.164 × MDR1). Correlation analysis showed a close and significant relationship between the calculated and actual warfarin dose (r = 0.457; p < 0.0005).

Conclusion

Warfarin dose/week was significantly influenced by the combined MDR1 C3435T and EPHX1 H139R gene polymorphism since no polymorphism of PZ A-13G SNP was detected in our studied Egyptian population. Future studies with larger sample size will be needed to confirm our findings before definitive conclusions can be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yoshizawa M, Hayashi H, Tashiro Y, et al. Effect of VKORC1-1639 G>A polymorphism, body weight, age, and serum albumin alterations on warfarin response in Japanese patients. Thromb Res. 2009;124:161–6. doi:10.1016/j.thromres.2008.11.011.

    Article  CAS  PubMed  Google Scholar 

  2. Ma Q, Lu AY. Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev. 2011;63(2):437–59. doi:10.1124/pr.110.003533.

    Article  CAS  PubMed  Google Scholar 

  3. Carlquist JF, Horne BD, Mower C, et al. An evaluation of nine genetic variants related to metabolism and mechanism of action of warfarin as applied to stable dose prediction. J Thromb Thrombolysis. 2010;30(3):358–64. doi:10.1007/s11239-010-0467-3.

    Article  CAS  PubMed  Google Scholar 

  4. Krynetskiy E, McDonnell P. Building individualized medicine: prevention of adverse reactions to warfarin therapy. J Pharmacol Exp Ther. 2007;322:427–34.

    Article  CAS  PubMed  Google Scholar 

  5. Wadelius M, Sörlin K, Wallerman O, et al. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J. 2004;4:40–8.

    Article  CAS  PubMed  Google Scholar 

  6. Sharma V, Kaul S, Al-Hazzani A, et al. Association of C3435T multi drug resistance gene-1 polymorphism with aspirin resistance in ischemic stroke and its subtypes. J Neurol Sci. 2012;315:72–6.

    Article  CAS  PubMed  Google Scholar 

  7. Taubert D, von Beckerath N, Grimberg G, et al. Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther. 2006;80(5):486–501.

    Article  CAS  PubMed  Google Scholar 

  8. Shabana MF, Mishriki AA, Issac MS, et al. Do MDR1 and SLCO1B1 polymorphisms influence the therapeutic response to atorvastatin? A study on a cohort of Egyptian patients with hypercholesterolemia. Mol Diagn Ther. 2013;17:299–309. doi:10.1007/s40291-013-0038-3.

    Google Scholar 

  9. García M, Macías RM, Cubero JJ, et al. ABCB1 polymorphisms are associated with cyclosporine induced nephrotoxicity and gingival hyperplasia in renal transplant recipients. Eur J Clin Pharmacol. 2013;69:385–393. doi:10.1007/s00228-012-1355-x.

    Google Scholar 

  10. Skov J, Bladbjerg EM, Leppin A, et al. The influence of VKORC1 and CYP2C9 gene sequence variants on the stability of maintenance phase warfarin treatment. Thromb Res. 2013;131:125–9.

    Article  CAS  PubMed  Google Scholar 

  11. Li YH, Wang YH, Li Y, et al. MDR1 gene polymorphisms and clinical relevance. Actu Cenetica Sinica. 2006;33:93–104.

    Article  Google Scholar 

  12. Reaves AB, Clarke CJ, Tillman EM. Supratherapeutic international normalized ratio due to reduced vitamin K intake secondary to prolonged vomiting in a patient on warfarin. Ann Pharmacother. 2013;47(6):e28. doi:10.1345/aph.1R688.

    Article  PubMed  Google Scholar 

  13. Wu AHB, Shin J. MDR1 polymorphism and warfarin resistance detection: is this the missing link? Pers Med. 2011;8(6):611–613.

    Google Scholar 

  14. SNP linked to Gene ABCB1 (geneID: 5243) Via contig annotation. http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?chooseRs=coding&locusId=5243&mrna. Accessed 17 Aug 2013.

  15. Hamidovic A, Hahn K, Kolesar J. Clinical significance of ABCB1 genotyping in oncology. J Oncol Pharm Pract. 2010;16:39–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Qiang G, Yan K, Jörn S, et al. VKORC1-1639G>A, CYP2C9, EPHX1691A>G genotype, body weight, and age are important predictors for warfarin maintenance doses in patients with mechanical heart valve prostheses in southwest China. Eur J Clin Pharmacol. 2010;66:1217–27.

    Article  Google Scholar 

  17. Hassett C, Aicher L, Sidhu JS, et al. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet. 1994;3(3):421–8.

    Article  CAS  PubMed  Google Scholar 

  18. Omiecinski CJ, Hassett C, Hosagrahara V. Epoxide hydrolase-polymorphism and role in toxicology. Toxicol Lett. 2000;112–113:365–70.

    Article  PubMed  Google Scholar 

  19. Hassett C, Lin J, Carty CL, et al. Human hepatic microsomal epoxide hydrolase: comparative analysis of polymorphic expression. Arch Biochem Biophys. 1997;337(2):275–83.

    Article  CAS  PubMed  Google Scholar 

  20. Guenthner TM, Cai D, Wallin R. Co-purification of microsomal epoxide hydrolase with the warfarin-sensitive vitamin K1 oxide reductase of the vitamin K cycle. Biochem Pharmacol. 1998;55:169–75.

    Article  CAS  PubMed  Google Scholar 

  21. Sejima H, Hayashi T, Deyashiki Y, et al. Primary structure of vitamin K-dependent human protein Z. Biochem Biophys Res Commun. 1990;171:661–8.

    Article  CAS  PubMed  Google Scholar 

  22. Bafunno V, Santacroce R, Margaglione M. The risk of occurrence of venous thrombosis: focus on protein Z. Thromb Res. 2011;128:508–15.

    Article  CAS  PubMed  Google Scholar 

  23. Fujimaki K, Yamazaki T, Taniwaki M, et al. The gene for human protein Z is localized to chromosome 13 at band q34 and is coded by eight regular exons and one alternative exon. Biochemistry. 1998;37:6838–46.

    Article  CAS  PubMed  Google Scholar 

  24. Staton J, Sayer M, Hankey GJ, et al. Protein Z gene polymorphisms, protein Z concentrations, and ischemic stroke. Stroke. 2005;36:1123–7.

    Article  CAS  PubMed  Google Scholar 

  25. Rice GI, Futers TS, Grant PJ. Identification of novel polymorphisms within the protein Z gene, haplotype distribution and linkage analysis. Thromb Haemost. 2001;85:1123–4.

    CAS  PubMed  Google Scholar 

  26. Miletich JP, Broze GJ Jr. Human plasma protein Z antigen: range in normal subjects and the effect of warfarin therapy. Blood. 1987;69:1580–6.

    CAS  PubMed  Google Scholar 

  27. Ekladious SM, Issac MS, Sharaf SA, et al. Validation of a Proposed warfarin dosing algorithm based on the genetic make-up of Egyptian patients. Mol Diagn Ther. doi:10.1007/s40291-013-0046-3. Epub 10 July 2013.

  28. Cascorbi I, Gerloff T, Johne A, et al. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther. 2001;69:169–74.

    Article  CAS  PubMed  Google Scholar 

  29. Lichy C, Kropp S, Dong-Si T. A common polymorphism of the protein Z gene is associated with protein Z plasma levels and with risk of cerebral ischemia in the young. Stroke. 2004;35:40–5.

    Article  CAS  PubMed  Google Scholar 

  30. De Oliveira Almeida VC, De Souza Ferreira AC, Ribeiro DD, et al. Association of the C3435T polymorphism of the MDR1 gene and therapeutic doses of warfarin in thrombophilic patients. J Thromb Haemost. 2011;9:2120–2.

  31. Siegmund W, Ludwig K, Giessmann T, et al. The effects of the human MDR1 genotype on the expression of duodenal P-glycoprotein and disposition of the probe drug talinolol. Clin Pharmacol Ther. 2002;72:572–83.

    Article  CAS  PubMed  Google Scholar 

  32. Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest. 1999;104:147–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Morita Y, Sakaeda T, Horinouchi M, et al. MDR1 genotype-related duodenal absorption rate of digoxin in healthy Japanese subjects. Pharm Res. 2003;20:552–6.

    Article  CAS  PubMed  Google Scholar 

  34. Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA. 2000;97:3473–8.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang WX, Chen GL, Zhang W, et al. MDR1 genotype do not influence the absorption of a single oral dose of 100 mg talinolol in healthy Chinese males. Clin Chim Acta. 2005;359:46–52.

    Article  CAS  PubMed  Google Scholar 

  36. Taubert D, von Beckerath N, Grimberg G, et al. Impact of p-glycoprotein on clopidogral absorption. Clin Pharmacol Ther. 2006;80:486–501.

    Article  CAS  PubMed  Google Scholar 

  37. Nakamura T, Sakaeda T, Ohmoto N, et al. Real-time quantitative polymerase chain reaction for MDR1, MRP1, MRP2, and CYP3AmRNA levels in Caco-2 cell lines, human duodenal enterocytes, normal colorectal tissues, and colorectal adenocarcinomas. Drug Metab Dispos. 2002;30:4–6.

    Article  CAS  PubMed  Google Scholar 

  38. Woodahl EL, Ho RJ. The role of MDR1 genetic polymorphisms in interindividual variability in P-glycoprotein expression and function. Curr Drug Metab. 2004;5:11–9.

    Article  CAS  PubMed  Google Scholar 

  39. Saraeva RB, Paskaleva ID, Doncheva E, et al. Pharmacogenetics of acenocoumarol: CYP2C9, CYP2C19, CYP1A2, CYP3A4, CYP3A5 and ABCB1 gene polymorphisms and dose requirements. J Clin Pharm Ther. 2007;32:641–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kim RB, Leake BF, Choo EF, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther. 2001;70:189–99.

    Article  CAS  PubMed  Google Scholar 

  41. Shuen AY, Wong BYL, Fu L, et al. Evaluation of the warfarin-resistance polymorphism, VKORC1 Asp36Tyr, and its effect on dosage algorithms in a genetically heterogeneous anticoagulant clinic. Clin Biochem. 2012;45:397–401.

    Article  CAS  PubMed  Google Scholar 

  42. Schelleman H, Brensinger CM, Chen J, et al. New genetic variant that might improve warfarin dose prediction in African Americans. Br J Clin Pharmacol. 2010;70:393–9.

    Article  CAS  PubMed  Google Scholar 

  43. Wadelius M, Chen LY, Lindh JD, et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood. 2009;113:784–92.

    Article  CAS  PubMed  Google Scholar 

  44. Pautas E, Moreau C, Gouin-Thibault I, et al. Genetic factors (VKORC1, CYP2C9, EPHX1, and CYP4F2) are predictor variables for warfarin response in very elderly, frail inpatients. Clin Pharmacol Ther. 2010;87:57–64.

    Article  CAS  PubMed  Google Scholar 

  45. Lee MT, Chen CH, Chou CH, et al. Genetic determinants of warfarin dosing in the Han-Chinese population. Pharmacogenomics. 2009;10:1905–13.

    Article  CAS  PubMed  Google Scholar 

  46. Chan SL, Thalamuthu A, Goh BC, et al. Exon sequencing and association analysis of EPHX1 genetic variants with maintenance warfarin dose in a multiethnic Asian population. Pharmacogenet Genomics. 2011;21:35–41.

    Article  CAS  PubMed  Google Scholar 

  47. Loebstein R, Vecsler M, Kurnik D, et al. Common genetic variants of microsomal epoxide hydrolase affect warfarin dose requirements beyond the effect of cytochrome P450 2C9. Clin Pharmacol Ther. 2005;77:365–72.

    Article  CAS  PubMed  Google Scholar 

  48. Yang X, Liang SH, Weyant DM, et al. The expression of human microsomal epoxide hydrolase is predominantly driven by a genetically polymorphic far upstream promoter. J Pharmacol Exp Ther. 2009;330:23–30.

    Article  CAS  PubMed  Google Scholar 

  49. Wadelius M, Chen LY, Eriksson N, et al. Association of warfarin dose with genes involved in its action and metabolism. Hum Genet. 2007;121:23–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Shikata E, Ieiri I, Ishiguro S, et al. Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and γ-glutamyl carboxylase) gene variants with warfarin sensitivity. Blood. 2004;103:2630–5. doi:10.1182/blood-2003-09-3043.

    Article  CAS  PubMed  Google Scholar 

  51. Shahin MH, Khalifa SI, Gong Y, et al. Genetic and nongenetic factors associated with warfarin dose requirements in Egyptian patients. Pharmacogenet Genomics. 2011;21(3):130–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Hamdy SI, Hiratsuka M, Narahara K, et al. Genotype and allele frequencies of TPMT, NAT2, GST, SULT1A1 and MDR-1in the Egyptian population. Br J Clin Pharmacol. 2003;55:560–9.

    Article  CAS  PubMed  Google Scholar 

  53. Le Cam-Duchez V, Barbay V, Bal Dit Sollier C, et al. Haplotypic or genotypic combinations of three protein Z polymorphisms influence protein Z plasma level. Thromb Haemost. 2009;101:212–4.

    PubMed  Google Scholar 

  54. Rice GI, Futers TS, Grant PJ. Identification of novel polymorphisms within the protein Z gene, haplotype distribution and linkage analysis. Thromb Haemost. 2001;85:1123–4.

    CAS  PubMed  Google Scholar 

  55. The International Warfarin Pharmacogenetics Consortium. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360(8):753–64.

    Article  PubMed Central  Google Scholar 

  56. Rusdiana T, Araki T, Nakamura T, et al. Responsiveness to low-dose warfarin associated with genetic variants of VKORC1, CYP2C9, CYP2C19, and CYP4F2 in an Indonesian population. Eur J Clin Pharmacol. 2013;69:395–405.

    Article  CAS  PubMed  Google Scholar 

  57. D’Andrea G, D’Ambrosio R, Margaglione M. Oral anticoagulants: pharmacogenetics relationship between genetic and non-genetic factors. Blood Rev. 2008;22(3):127–40.

    Article  PubMed  Google Scholar 

  58. Teh LK, Langmia IM, FazleenHaslinda MH, et al. Clinical relevance of VKORC1 (G-1639A and C1173T) and CYP2C9*3 among patients on warfarin. J Clin Pharm Ther. 2012;37:232–6.

    Article  CAS  PubMed  Google Scholar 

  59. Cini M, Legnani C, Cosmi B, et al. A new warfarin dosing algorithm including VKORC1 3730 G>A polymorphism: comparison with results obtained by other published algorithms. Eur J Clin Pharmacol. 2012;68(8):1167–74.

    Article  CAS  PubMed  Google Scholar 

  60. Xu D, Liu Y, Zhong S-L, et al. Effect of demographic factors on warfarin dosing in patients after cardiac valve replacement. J Pract Med. 2010;5:750–3.

    Google Scholar 

  61. Jonas DE, McLeod HL. Genetic and clinical factors relating to warfarin dosing. Trends Pharmacol Sci. 2009;30(7):375–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements and Disclosures

The preparation of this article was not supported by any external funding. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Samir Makboul Issac.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 764 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Issac, M.S.M., El-Nahid, M.S. & Wissa, M.Y. Is There a Role for MDR1, EPHX1 and Protein Z Gene Variants in Modulation of Warfarin Dosage? A Study on a Cohort of the Egyptian Population. Mol Diagn Ther 18, 73–83 (2014). https://doi.org/10.1007/s40291-013-0055-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-013-0055-2

Keywords

Navigation