Skip to main content
Log in

Echocardiography in Arterial Hypertension

  • Review Article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Hypertension is a condition characterized by pressure and/or volume overloads and echocardiography is helpful and feasible to understand hemodynamic mechanisms. Echocardiographic information is sometimes critical and susceptible of modifying decision making. In this review, we provide detailed descriptions of the parameters that can be derived from a standard transthoracic echocardiogram, including some more recent techniques. We will also explain how each parameter might have impact in the evaluation of the hypertensive patient and give indications on when to refer patients to echo-labs, which parameters are critical and which ones might be redundant, and how to use the information obtained in the report. Cardiac geometry, LV systolic and diastolic function, LV pump performance, output impedance and left atrial function are parameters that might be altered in arterial hypertension, but not necessarily doctors need the whole information for decision making. The critical measures are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baicu CF, Zile MR, Aurigemma GP, Gaasch WH. Left ventricular systolic performance, function, and contractility in patients with diastolic heart failure. Circulation. 2005;111:2306–12.

    Article  PubMed  Google Scholar 

  2. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study [see comments]. N Engl J Med. 1990;322:1561–6.

    Article  PubMed  CAS  Google Scholar 

  3. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114:345–52.

    Article  PubMed  CAS  Google Scholar 

  4. de Simone G, Izzo R, Aurigemma GP, et al. Cardiovascular risk in relation to a new classification of hypertensive left ventricular geometric abnormalities. J Hypertens. 2015;33:745–54 (discussion 754).

    Article  PubMed  CAS  Google Scholar 

  5. de Simone G, Izzo R, Chinali M, et al. Does information on systolic and diastolic function improve prediction of a cardiovascular event by left ventricular hypertrophy in arterial hypertension? Hypertension. 2010;56:99–104.

    Article  PubMed  CAS  Google Scholar 

  6. Mancusi C, Losi MA, Izzo R, et al. Higher pulse pressure and risk for cardiovascular events in patients with essential hypertension: the Campania Salute Network. Eur J Prev Cardiol. 2018;25:235–43.

    Article  PubMed  Google Scholar 

  7. Devereux RB, Wachtell K, Gerdts E, et al. Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA. 2004;292:2350–6.

    Article  PubMed  CAS  Google Scholar 

  8. Devereux RB, Alderman MH. Role of preclinical cardiovascular disease in the evolution from risk factor exposure to development of morbid events. Circulation. 1993;88:1444–55.

    Article  PubMed  CAS  Google Scholar 

  9. Khouri MG, Peshock RM, Ayers CR, de Lemos JA, Drazner MH. A 4-tiered classification of left ventricular hypertrophy based on left ventricular geometry: the Dallas heart study. Circ Cardiovasc Imaging. 2010;3:164–71.

    Article  PubMed  Google Scholar 

  10. Tsao CW, Gona PN, Salton CJ, et al. Left ventricular structure and risk of cardiovascular events: a Framingham Heart Study Cardiac Magnetic Resonance Study. J Am Heart Assoc. 2015;4:e002188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Schillaci G, de Simone G, Reboldi G, Porcellati C, Devereux RB, Verdecchia P. Change in cardiovascular risk profile by echocardiography in low- or medium-risk hypertension. J Hypertens. 2002;20:1519–25.

    Article  PubMed  CAS  Google Scholar 

  12. Pouleur AC, le Polain de Waroux JB, Pasquet A, et al. Assessment of left ventricular mass and volumes by three-dimensional echocardiography in patients with or without wall motion abnormalities: comparison against cine magnetic resonance imaging. Heart. 2008;94:1050–7.

    Article  PubMed  Google Scholar 

  13. Qin JX, Jones M, Travaglini A, et al. The accuracy of left ventricular mass determined by real-time three-dimensional echocardiography in chronic animal and clinical studies: a comparison with postmortem examination and magnetic resonance imaging. J Am Soc Echocardiogr. 2005;18:1037–43.

    Article  PubMed  Google Scholar 

  14. Cioffi G, Rossi A, Targher G, et al. Usefulness of subclinical left ventricular midwall dysfunction to predict cardiovascular mortality in patients with type 2 diabetes mellitus. Am J Cardiol. 2014;113:1409–14.

    Article  PubMed  Google Scholar 

  15. de Simone G, Devereux RB, Koren MJ, Mensah GA, Casale PN, Laragh JH. Midwall left ventricular mechanics. An independent predictor of cardiovascular risk in arterial hypertension. Circulation. 1996;93:259–65.

    Article  PubMed  Google Scholar 

  16. Saito K, Okura H, Watanabe N et al. Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in normal adults: comparison of three-dimensional and two-dimensional approaches. J Am Soc Echocardiogr 2009.

  17. Shah AM, Claggett B, Sweitzer NK, et al. Prognostic importance of impaired systolic function in heart failure with preserved ejection fraction and the impact of spironolactone. Circulation. 2015;132:402–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lonnebakken MT, Izzo R, Mancusi C, et al. Left ventricular hypertrophy regression during antihypertensive treatment in an outpatient clinic (the Campania Salute Network). J Am Heart Assoc. 2017;6(3). pii: e004152. https://doi.org/10.1161/JAHA.116.004152.

  19. de Simone G, Devereux RB, Izzo R, et al. Lack of reduction of left ventricular mass in treated hypertension: the strong heart study. J Am Heart Assoc. 2013;2:e000144.

    Article  PubMed  PubMed Central  Google Scholar 

  20. de Simone G, Devereux RB, Kimball TR, et al. Interaction between body size and cardiac workload: influence on left ventricular mass during body growth and adulthood. Hypertension. 1998;31:1077–82.

    Article  PubMed  Google Scholar 

  21. Devereux RB, de Simone G, Ganau A, Roman MJ, Wallerson DC. Left ventricular mass as an indicator of hemodynamic load in hypertension. J Cardiovasc Pharmacol. 1991;17(Suppl 2):S33.

    Article  PubMed  Google Scholar 

  22. de Simone G, Verdecchia P, Schillaci G, Devereux RB. Clinical impact of various geometric models for calculation of echocardiographic left ventricular mass [see comments]. J Hypertens. 1998;16:1207–14.

    Article  PubMed  Google Scholar 

  23. Marwick TH, Gillebert TC, Aurigemma G, et al. Recommendations on the use of echocardiography in adult hypertension: a report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE)dagger. Eur Heart J Cardiovasc Imaging. 2015;16:577–605.

    PubMed  Google Scholar 

  24. Dewey FE, Rosenthal D, Murphy DJ Jr, Froelicher VF, Ashley EA. Does size matter? Clinical applications of scaling cardiac size and function for body size. Circulation. 2008;117:2279–87.

    Article  PubMed  Google Scholar 

  25. Kuznetsova T, Haddad F, Tikhonoff V, et al. Impact and pitfalls of scaling of left ventricular and atrial structure in population-based studies. J Hypertens. 2016;34:1186–94.

    Article  PubMed  CAS  Google Scholar 

  26. de Simone G, Pasanisi F, Ferrara AL, et al. Relative fat-free mass deficiency and left ventricular adaptation to obesity: the Strong Heart Study. IntJ Cardiol. 2013;168:729–33.

    Article  Google Scholar 

  27. de Simone G, Daniels SR, Devereux RB, et al. Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol. 1992;20:1251–60.

    Article  PubMed  Google Scholar 

  28. de Simone G, Kizer JR, Chinali M, et al. Normalization for body size and population-attributable risk of left ventricular hypertrophy. The Strong Heart Study. Am J Hypertens. 2005;18:191–6.

    Article  PubMed  Google Scholar 

  29. de Simone G, Devereux RB, Maggioni AP, Gorini M, de Divitiis O, Verdecchia P. Different normalizations for body size and population attributable risk of left ventricular hypertrophy: the MAVI study. Am J Hypertens. 2005;18:1288–93.

    Article  PubMed  Google Scholar 

  30. de Simone G, Daniels SR, Kimball TR, et al. Evaluation of concentric left ventricular geometry in humans: evidence for age-related systematic underestimation. Hypertension. 2005;45:64–8.

    Article  PubMed  CAS  Google Scholar 

  31. Chinali M, Aurigemma GP. Refining patterns of left ventricular hypertrophy using cardiac MRI: “brother, can you spare a paradigm?”. Circ Cardiovasc Imaging. 2010;3:129–31.

    Article  PubMed  Google Scholar 

  32. Lembo MER, Santoro C, Lo Iudice F. Schiano-Lomoriello V, Fazio V, Grimaldi MG, Trimarco B, de Simone G, Galderisi M. Three dimensional echocardiographic ventricular mass/end-diastolic volume ratio in native hypertensive patients: relation between stroke volume and geometry. J Hypertens. 2018. https://doi.org/10.1097/HJH.0000000000001717 (Epub ahead of print).

  33. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. JClinInvest. 1975;56:56–64.

    CAS  Google Scholar 

  34. de Simone G, Verdecchia P, Pede S, Gorini M, Maggioni AP. Prognosis of inappropriate left ventricular mass in hypertension: the MAVI study. Hypertension. 2002;40:470–6.

    Article  PubMed  Google Scholar 

  35. Chinali M, De Marco M, D’addeo G, et al. Excessive increase in left ventricular mass identifies hypertensive subjects with clustered geometric and functional abnormalities. J Hypertens. 2007;25:1073–8.

    Article  PubMed  CAS  Google Scholar 

  36. Douglas PS. The left atrium: a biomarker of chronic diastolic dysfunction and cardiovascular disease risk. J Am Coll Cardiol. 2003;42:1206–7.

    Article  PubMed  Google Scholar 

  37. Tsang TS, Barnes ME, Gersh BJ, Bailey KR, Seward JB. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol. 2002;90:1284–9.

    Article  PubMed  Google Scholar 

  38. Canciello G, de Simone G, Izzo R, et al. Validation of left atrial volume estimation by left atrial diameter from the parasternal long-axis view. J Am Soc Echocardiogr. 2017;30:262–9.

    Article  PubMed  Google Scholar 

  39. de Simone G, Devereux RB, Celentano A, Roman MJ. Left ventricular chamber and wall mechanics in the presence of concentric geometry. J Hypertens. 1999;17:1001–6.

    Article  PubMed  Google Scholar 

  40. de Simone G, Devereux RB. Rationale of echocardiographic assessment of left ventricular wall stress and midwall mechanics in hypertensive heart disease. EurJ Echocardiogr. 2002;3:192–8.

    Article  Google Scholar 

  41. Galderisi M, Esposito R, Schiano-Lomoriello V, et al. Correlates of global area strain in native hypertensive patients: a three-dimensional speckle-tracking echocardiography study. Eur Heart J Cardiovasc Imaging. 2012;13:730–8.

    Article  PubMed  Google Scholar 

  42. Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr. 2011;24:277–313.

    Article  PubMed  Google Scholar 

  43. Notomi Y, Lysyansky P, Setser RM, et al. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol. 2005;45:2034–41.

    Article  PubMed  Google Scholar 

  44. Lembo M, Esposito R, Li F, et al. Impact of pulse pressure on left ventricular global longitudinal strain in normotensive and newly diagnosed, untreated hypertensive patients. J Hypertens. 2016;34:1201–7.

    Article  PubMed  CAS  Google Scholar 

  45. Galderisi M, Trimarco B. Global longitudinal strain: a novel hallmark of cardiac risk in arterial hypertension. J Hypertens. 2016;34:1050–1.

    Article  PubMed  CAS  Google Scholar 

  46. Contaldi C, Imbriaco M, Alcidi G, et al. Assessment of the relationships between left ventricular filling pressures and longitudinal dysfunction with myocardial fibrosis in uncomplicated hypertensive patients. Int J Cardiol. 2016;202:84–6.

    Article  PubMed  Google Scholar 

  47. Modin D, Biering-Sorensen SR, Mogelvang R, Landler N, Jensen JS, Biering-Sorensen T. Prognostic value of echocardiography in hypertensive versus nonhypertensive participants from the general population. Hypertension. 2018;71:742–51.

    Article  PubMed  CAS  Google Scholar 

  48. De Marco M, Gerdts E, Mancusi C, et al. Influence of left ventricular stroke volume on incident heart failure in a population with preserved ejection fraction (from the Strong Heart Study). Am J Cardiol. 2017;119:1047–52.

    Article  PubMed  PubMed Central  Google Scholar 

  49. de Simone G, Devereux RB, Daniels SR, et al. Stroke volume and cardiac output in normotensive children and adults. Assessment of relations with body size and impact of overweight. Circulation. 1997;95:1837–43.

    Article  PubMed  Google Scholar 

  50. de Simone G, Devereux RB, Ganau A, et al. Estimation of left ventricular chamber and stroke volume by limited M-mode echocardiography and validation by two-dimensional and Doppler echocardiography. Am J Cardiol. 1996;78:801–7.

    Article  PubMed  Google Scholar 

  51. Mancusi C, Gerdts E, de Simone G, et al. Higher pulse pressure/stroke volume index is associated with impaired outcome in hypertensive patients with left ventricular hypertrophy the LIFE study. Blood Press. 2017;26:150–5.

    Article  PubMed  Google Scholar 

  52. Mancusi C, Gerdts E, dS G, et al. Impact of isolated systolic hypertension on normalization of left ventricular structure during antihypertensive treatment (the LIFE study). Blood Press. 2014;23:206–12.

    Article  PubMed  CAS  Google Scholar 

  53. Chemla D, Hebert JL, Coirault C, et al. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol. 1998;274:H500–5.

    Article  PubMed  CAS  Google Scholar 

  54. Berkenstadt H, Friedman Z, Preisman S, Keidan I, Livingstone D, Perel A. Pulse pressure and stroke volume variations during severe haemorrhage in ventilated dogs. Br J Anaesth. 2005;94:721–6.

    Article  PubMed  CAS  Google Scholar 

  55. Devereux RB, dS G, Arnett DK, et al. Normal limits in relation to age, body size and gender of two-dimensional echocardiographic aortic root dimensions in persons >/=15 years of age. Am J Cardiol. 2012;110:1189–94.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Milan A, Avenatti E, Tosello F, et al. Aortic root dilatation in essential hypertension: prevalence according to new reference values. J Hypertens. 2013;31:1189–95.

    Article  PubMed  CAS  Google Scholar 

  57. de Simone G, Roman MJ, De Marco M, et al. Hemodynamic correlates of abnormal aortic root dimension in an adult population: The Strong Heart Study. J Am Heart Assoc. 2015;4:e002309.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Aljaroudi W, Alraies MC, Halley C, et al. Impact of progression of diastolic dysfunction on mortality in patients with normal ejection fraction. Circulation. 2012;125:782–8.

    Article  PubMed  Google Scholar 

  59. de Simone G, Greco R, Mureddu G, et al. Relation of left ventricular diastolic properties to systolic function in arterial hypertension. Circulation. 2000;101:152–7.

    Article  PubMed  Google Scholar 

  60. de Simone G, Kitzman DW, Chinali M, et al. Left ventricular concentric geometry is associated with impaired relaxation in hypertension: the HyperGEN study. Eur Heart J. 2005;26:1039–45.

    Article  PubMed  Google Scholar 

  61. Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17:1321–60.

    Article  PubMed  Google Scholar 

  62. Lancellotti P, Galderisi M, Edvardsen T, et al. Echo-Doppler estimation of left ventricular filling pressure: results of the multicentre EACVI Euro-Filling study. Eur Heart J Cardiovasc Imaging. 2017;18:961–8.

    Article  PubMed  Google Scholar 

  63. Schillaci G, Pasqualini L, Verdecchia P, et al. Prognostic significance of left ventricular diastolic dysfunction in essential hypertension. J Am Coll Cardiol. 2002;39:2005–11.

    Article  PubMed  Google Scholar 

  64. Chinali M, Aurigemma G, de Simone G, et al. Mitral E wave deceleration time to peak E velocity ratio and cardiovascular outcome in hypertensive patients during anti-hypertensive treatment (from the LIFE Echo-Substudy). Am J Cardiol. 2009;104:1098–104.

    Article  PubMed  Google Scholar 

  65. Galderisi M, Rapacciuolo A, Esposito R, et al. Site-dependency of the E/e’ ratio in predicting invasive left ventricular filling pressure in patients with suspected or ascertained coronary artery disease. Eur Heart J Cardiovasc Imaging. 2013;14:555–61.

    Article  PubMed  Google Scholar 

  66. Gottdiener JS, Kitzman DW, Aurigemma GP, Arnold AM, Manolio TA. Left atrial volume, geometry, and function in systolic and diastolic heart failure of persons > or = 65 years of age (the cardiovascular health study). Am J Cardiol. 2006;97:83–9.

    Article  PubMed  Google Scholar 

  67. Eshoo S, Semsarian C, Ross DL, Thomas L. Left atrial phasic volumes are modulated by the type rather than the extent of left ventricular hypertrophy. J Am Soc Echocardiogr. 2010;23:538–44.

    Article  PubMed  Google Scholar 

  68. Eshoo S, Ross DL, Thomas L. Impact of mild hypertension on left atrial size and function. Circ Cardiovasc Imaging. 2009;2:93–9.

    Article  PubMed  Google Scholar 

  69. Chinali M, de Simone G, Liu JE, et al. Left atrial systolic force and cardiac markers of preclinical disease in hypertensive patients: the Hypertension Genetic Epidemiology Network (HyperGEN) Study. Am J Hypertens. 2005;18:899–905.

    Article  PubMed  Google Scholar 

  70. Khan UA, de Simone G, Hill J, Tighe DA, Aurigemma GP. Depressed atrial function in diastolic dysfunction: a speckle tracking imaging study. Echocardiography. 2013;30:309–16.

    Article  PubMed  Google Scholar 

  71. Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.

    Article  PubMed  Google Scholar 

  72. Whelton PK, Carey RM, Aronow WS, et al. ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2017. pii: HYP.0000000000000065. https://doi.org/10.1161/HYP.0000000000000065 (Epub ahead of print).

  73. Chow CK, Teo KK, Rangarajan S, et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA. 2013;310:959–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni de Simone.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Simone, G., Mancusi, C., Esposito, R. et al. Echocardiography in Arterial Hypertension. High Blood Press Cardiovasc Prev 25, 159–166 (2018). https://doi.org/10.1007/s40292-018-0259-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-018-0259-y

Keywords

Navigation