Skip to main content
Log in

Humanoid Robot Framework for Research on Cognitive Robotics

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper presents a humanoid robot framework, composed of a simulator and a telemetry interface. The framework is based on the Cross Architecture, and it is developed aiming for the RoboCup Soccer Humanoid League domain. A simulator is an important tool for testing cognitive algorithms without handling issues of real robots; furthermore, a simulator is extremely useful for allowing reproducibility of any developed algorithm, even if there is no robot available. The proposed simulator allows an easy transfer of the algorithms developed in the simulator to real robots, as long as it uses the Cross Architecture as its software architecture. Then, in order to evaluate the cognitive algorithms in real robots, a telemetry interface is proposed. From this interface, it is possible to monitor any variable in the robot’s shared memory. The framework is open source and has low computational cost. Experiments were conducted in order to analyze both, simulator and telemetry interface. Experiments performed with the simulator aim to validate the high-level strategy development and the portability to a real robot, while experiments with telemetry interface aim to evaluate the robot behavior using, as input, the information received from the shared memory passed by all processes. The results show that the simulator can be used to test and develop new algorithms, while the telemetry can be used to monitor the robot, thus validating the framework for this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The source code of the framework is available at: https://github.com/danilo-perico/robofei-ht-framework.

References

  • Allgeuer, P., Schwarz, M., Pastrana, J., Schueller, S., Missura, M., & Behnke, S. (2013). A ROS-based software framework for the NimbRo-OP humanoid open platform. In Proceedings of the 8th workshop on humanoid soccer robot. IEEE-RAS, Atlanta.

  • Arkin, R. C. (1998). Behavior-based robotics. Cambridge: MIT Press.

    Google Scholar 

  • Barrett, S., Genter, K., He, Y., Hester, T., Khandelwal, P., Menashe, J., et al. (2013). UT Austin Villa 2012: Standard Platform League World Champions. In RoboCup, China.

  • Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2(1), 14–23.

    Article  Google Scholar 

  • Dellaert, F., Fox, D., Burgard, W., & Thrun, S. (1999). Monte Carlo localization for mobile robots. In 1999 IEEE international conference on robotics and automation. Proceedings (Vol. 2, pp. 1322–1328). IEEE.

  • Fox, D., Burgard, W., Dellaert, F., & Thrun, S. (1999). Monte carlo localization: Efficient position estimation for mobile robots. AAAI/IAAI, 343–349, 1999.

    MATH  Google Scholar 

  • Gazebo. (2016). http://gazebosim.org. Accessed May 19, 2016.

  • Ha, I., Tamura, Y., Asama, H., Han, J., & Hong, D. W. (2011). Development of open humanoid platform DARwIn-OP. In SICE annual conference 2011 (pp. 2178–2181).

  • Hayes-Roth, B. (1985). A blackboard architecture for control. Artificial Intelligence, 26(3), 251–321.

    Article  Google Scholar 

  • Homem, T. P. D., Perico, D. H., Santos, P. E., Bianchi, R. A. C., & de Mantaras, R. L. (2017). Retrieving and reusing qualitative cases: An application in humanoid-robot soccer. AI Communications, 30(3–4), 251–265.

    Article  MathSciNet  Google Scholar 

  • Ingrand, F. F., Chatila, R., Alami, R., & Robert, F. (1996). PRS: A high level supervision and control language for autonomous mobile robots. In 1996 IEEE international conference on robotics and automation. Proceedings (Vol. 1, pp. 43–49). IEEE.

  • Perico, D. H., Bianchi, R. A. C., Santos, P. E., & Lopez de Mántaras, R. (2016). Collaborative communication of qualitative spatial perceptions for multi-robot systems. In Proceedings of 29th international workshop on qualitative reasoning (IJCAI), New York.

  • Perico, D. H., Homem, T. P. D., Almeida, A. C., Silva, I. J., Vilão, C. O., Ferreira, V. N., & Bianchi, R. A. C. (2016). A robot simulator based on the cross architecture for the development of cognitive robotics. In 2016 XIII Latin American robotics symposium and IV Brazilian robotics symposium (LARS/SBR) (pp. 317–322).

  • Perico, D. H., Silva, I. J., Vilão Jr., C. O., Homem, T. P. D., Destro, R. C., & Tonidandel, F. (2014a). Joint conference on robotics, LARS 2014, SBR 2014, robocontrol 2014. Revised selected papers, chapter Newton: A high level control humanoid robot for the RoboCup Soccer KidSize League. Berlin: Springer.

  • Perico, D. H., Silva, I. J., Vilão, C. O., Homem, T. P. D., Destro, R. C., Tonidandel, F., et al. (2014b). Hardware and software aspects of the design and assembly of a new humanoid robot for robocup soccer. In Robotics: SBR-LARS robotics symposium and robocontrol (SBR LARS Robocontrol).

  • Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009). ROS: An open-source robot operating system. In ICRA workshop on open source software.

  • RoboCup Humanoid League. (2016/2017). RoboCup Soccer Humanoid League Laws of the Game. https://www.robocuphumanoid.org/materials/rules/. Accessed Nov 20, 2017.

  • Robocup Soccer simulation. (2017). http://wiki.robocup.org/Soccer_Simulation_League. Accessed Nov 20, 2017.

  • Russell, S. J., & Norvig, P. (2010). Artificial intelligence: A modern approach. Englewood Cliffs: Prentice Hall Press.

    MATH  Google Scholar 

  • Silva, I. J., Perico, D. H., Homem, T. P. D., Vilão, C. O., Tonidandel, F., & Bianchi, R. A. C. (2015). Using reinforcement learning to improve the stability of a humanoid robot: Walking on sloped terrain. In 12th Latin American robotics symposium and 2015 3rd Brazilian symposium on robotics (LARS-SBR).

  • Vilão, C. O., Perico, D. H., Silva, I. J., Homem, T. P. D., Tonidandel, F., & Bianchi, R. A. C. (2014). A single camera vision system for a humanoid robot. In SBR-LARS robotics symposium and robocontrol.

  • Virtual robot experimentation platform. (2016). http://www.v-rep.eu/. Accessed May 19, 2016.

  • Webots. (2016). http://www.cyberbotics.com/. Accessed May 19, 2016.

Download references

Acknowledgements

The authors would like to thank CAPES, CNPq and FAPESP (grants 2016/21047-3 and 2016/18792-9) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo H. Perico.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perico, D.H., Homem, T.P.D., Almeida, A.C. et al. Humanoid Robot Framework for Research on Cognitive Robotics. J Control Autom Electr Syst 29, 470–479 (2018). https://doi.org/10.1007/s40313-018-0390-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-018-0390-y

Keywords

Navigation