Skip to main content
Log in

Sliding Mode Control Versus Fractional-Order Sliding Mode Control: Applied to a Magnetic Levitation System

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper focuses on the comparative performances between a Sliding Mode Controller (SMC) and a Fractional-Order SMC (FOSMC). Both the SMC and FOSMC are applied to position control of a ferromagnetic ball against gravity in a Magnetic Levitation (MagLev) system. This paper is the extended version of Roy et al. (in: 2017 Indian control conference (ICC), pp 473–478, 2017). In addition to the contribution of Roy et al. (2017), this paper (i) shows the better potential of an FOSMC over a SMC which is illustrated analytically and (ii) finds the bounds of uncertainty of the parameters of the MagLev system using frequency domain analysis. Experimental results validate the theoretical propositions. The comparative analysis based on these results reveals that the FOSMC performs better than the SMC in terms of tracking accuracy, speed of response, chattering, control effort, and control energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Binazadeh, T., & Shafiei, M. (2013). Output tracking of uncertain fractional-order nonlinear systems via a novel fractional-order sliding mode approach. Mechatronics, 23(7), 888–892.

    Article  Google Scholar 

  • Corradini, M. L., Giamb, R., & Pettinari, S. (2015). On the adoption of a fractional-order sliding surface for the robust control of integer-order LTI plants. Automatica, 51, 364–371.

    Article  MathSciNet  Google Scholar 

  • Das, S. (2011). Functional fractional calculus (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Ebrahimkhani, S. (2016). Robust fractional order sliding mode control of doubly-fed induction generator (DFIG) based wind turbines. ISA Transactions, 63, 343–354.

    Article  Google Scholar 

  • Fridman, L., Moreno, J., & Iriarte, R. (2011). Sliding modes after the first decade of the 21st century. Berlin: Springer.

    Google Scholar 

  • Instruments, F. (2011). Magnetic levitation control experiments manual no 33-210. East Sussex: Feedback Instruments Ltd.

    Google Scholar 

  • Merrikh-Bayat, F. (2012). Rules for selecting the parameters of oustaloup recursive approximation for the simulation of linear feedback systems containing PI\(^\lambda \)d\(^\mu \) controller. Communications in Nonlinear Science and Numerical Simulation, 17(4), 1852–1861.

    Article  MathSciNet  Google Scholar 

  • Monje, C., Calderon, A., Vinagre, B., Chen, Y., & Feliu, V. (2004). On fractional PI\(^\lambda \) controllers: Some tuning rules for robustness to plant uncertainties. Nonlinear Dynamics, 38, 369–381.

    Article  Google Scholar 

  • Monje, C., Chen, Y., Vinagre, B., Xue, D., & Feliu, V. (2010). Fractional-order systems and controls: Fundamentals and applications. London: Springer.

    Book  Google Scholar 

  • Ogata, K. (2002). Modern control engineering (4th ed.). New Jersey: Pearson Education International.

    MATH  Google Scholar 

  • Oldham, K. B., & Spanier, J. (1974). The fractional calculus: Theory and application of differentiation and integration to arbitrary order., Mathematics in science and engineering New York: Academic Press.

    MATH  Google Scholar 

  • Podlubny, I. (1990). Fractional differential equations. San Diago: Academic Press.

    MATH  Google Scholar 

  • Podlubny, I. (1999). Fractional-order systems and PI\(^\lambda \)D\(^\mu \) controllers. IEEE Transactions on Automatic Control, 44, 208–214.

    Article  MathSciNet  Google Scholar 

  • Roy, P., & Roy, B. K. (2016). Fractional order PI control applied to level control in coupled two tank MIMO system with experimental validation. Control Engineering Practice, 48, 119–135.

    Article  Google Scholar 

  • Roy, P., Sarkar, S., Roy, B. K. & Singh, N. (2017). A comparative study between fractional order SMC and SMC applied to magnetic levitation system. In 2017 Indian control conference (ICC) (pp. 473–478).

  • Sara, D., & Reza, M. H. (2014). Fractional-order dynamic output feedback sliding mode control design for robust stabilization of uncertain fractional-order nonlinear systems. Asian Journal of Control, 16(2), 489–497.

    Article  MathSciNet  Google Scholar 

  • Shtessel, Y., Edwards, C., Fridman, L., & Levant, A. (2010). Sliding mode control and observation. Maryland College Park: Springer.

    Google Scholar 

  • Sutha, S., Lakshmi, P., & Sankaranarayanan, S. (2015). Fractional-order sliding mode controller design for a modified quadruple tank process via multi-level switching. Computers and Electrical Engineering, 45, 10–21.

    Article  Google Scholar 

  • Tang, Y., Zhang, X., Zhang, D., Zhao, G., & Guan, X. (2013). Fractional order sliding mode controller design for antilock braking systems. Neurocomputing, 111, 122–130.

    Article  Google Scholar 

  • Ullah, N., Shaoping, W., Khattak, M. I., & Shafi, M. (2015). Fractional order adaptive fuzzy sliding mode controller for a position servo system subjected to aerodynamic loading and nonlinearities. Aerospace Science and Technology, 43, 381–387.

    Article  Google Scholar 

  • Utkin, V. (1977). Variable structure systems with sliding modes. IEEE Transactions on Automatic Control, 22(2), 212–222.

    Article  MathSciNet  Google Scholar 

  • Yin, C., Chen, Y., & ming Zhong, S. (2014). Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica, 50(12), 3173–3181.

    Article  MathSciNet  Google Scholar 

  • Young, K., Utkin, V., & Ozguner, U. (1999). A control engineer’s guide to sliding mode control. IEEE Transactions on Control Systems Technology, 7(3), 328–342.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, P., Roy, B.K. Sliding Mode Control Versus Fractional-Order Sliding Mode Control: Applied to a Magnetic Levitation System. J Control Autom Electr Syst 31, 597–606 (2020). https://doi.org/10.1007/s40313-020-00587-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-020-00587-8

Keywords

Navigation