Skip to main content
Log in

Completely Monotonic Gamma Ratio and Infinitely Divisible H-Function of Fox

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

We investigate conditions for logarithmic complete monotonicity of a quotient of two products of gamma functions, where the argument of each gamma function has a different scaling factor. We give necessary and sufficient conditions in terms of non-negativity of some elementary functions and some more practical sufficient conditions in terms of parameters. Further, we study the representing measure in Bernstein’s theorem for both equal and non-equal scaling factors. This leads to conditions on parameters under which Meijer’s G-function or Fox’s H-function represents an infinitely divisible probability distribution on the positive half-line. Moreover, we present new integral equations for both G-function and H-function. The results of the paper generalize those due to Ismail (with Bustoz, Muldoon and Grinshpan) and Alzer who considered previously the case of unit scaling factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66(217), 373–389 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  3. Bochner, S.: Lectures on Fourier Integrals. Princeton University Press, Princeton (1959)

    MATH  Google Scholar 

  4. Bustoz, J., Ismail, M.E.H.: On gamma function inequalities. Math. Comp. 47, 659–667 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grinshpan, A.Z., Ismail, M.E.H.: Completely monotonic functions involving the gamma and \(q\)-gamma functions. Proc. Am. Math. Soc. 134(4), 1153–1160 (2005)

    Article  MathSciNet  Google Scholar 

  6. Guo, B.N., Qi, F.: Properties and applications of a function involving exponential functions. Commun. Pure Appl. Anal. 8(4), 1231–1249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ismail, M.E.H., Muldoon, M.E.: Inequalities and monotonicity properties for gamma and \(q\)-gamma functions. In: Zahar, R.V.M. (ed.) Approximation and Computation: A Festschrift in Honor of Walter Gautschi, ISNM, vol. 119, pp. 309–323. Birkhäuser, Boston (1994). Corrected version: arXiv:1301.1749v1

  8. Karp, D., Prilepkina, E.: Hypergeometric functions as generalized Stieltjes transforms. J. Math. Anal. Appl. 393(2), 348–359 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kilbas, A.A., Saigo, M.: H-Transforms and Applications, Analytical Methods and Special Functions, vol. 9. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

  10. Koumandos, S.: On completely monotonic and related functions. In: Rassias, T.M., Pardalos, P.M. (eds.) Mathematics Without Boundaries, pp. 285–321. Springer, New York (2014)

    Google Scholar 

  11. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  12. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and its Applications, 2nd edn. Springer, New York (2011)

    Book  Google Scholar 

  13. Mathai, A.M., Saxena, R.K., Haubold, H.J.: The H-Function: Theory and Applications. Springer, New York (2010)

    Book  Google Scholar 

  14. Nørlund, N.E.: Hypergeometric functions. Acta Math. 94, 289–349 (1955)

    Article  MathSciNet  Google Scholar 

  15. Paris, R.B., Kaminski, D.: Asymptotics and Mellin-Barnes Integrals. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  16. Prudnikov, A.P., Brychkov, YuA, Marichev, O.I.: Integrals and Series, Volume 3: More Special Functions. Gordon and Breach Science Publishers, Philadelphia (1990)

    MATH  Google Scholar 

  17. Sato, K.: Lévy processes and infinitely divisible distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  18. Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions. Theory and Applications, Studies in Mathematics, vol. 37. Walter de Gruyter, Berlin (2010)

    Google Scholar 

  19. Widder, D.W.: The Laplace Transform. Princeton University Press, Princeton (1946)

    Google Scholar 

Download references

Acknowledgments

We thank the anonymous referee for correcting a mistake in the original version of the paper and numerous useful suggestions that helped to improve the exposition substantially. This work has been supported by the Russian Science Foundation under project 14-11-00022.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. B. Karp or E. G. Prilepkina.

Additional information

Communicated by Stephan Ruscheweyh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karp, D.B., Prilepkina, E.G. Completely Monotonic Gamma Ratio and Infinitely Divisible H-Function of Fox. Comput. Methods Funct. Theory 16, 135–153 (2016). https://doi.org/10.1007/s40315-015-0128-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-015-0128-9

Keywords

Mathematics Subject Classfication

Navigation