Skip to main content
Log in

About a Non-Standard Interpolation Problem

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Using algebraic methods, and motivated by the one variable case, we study a multipoint interpolation problem in the setting of several complex variables. The duality realized by the residue generator associated with an underlying Gorenstein algebra, using the Lagrange interpolation polynomial, plays a key role in the arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agler, J.: On the representation of certain holomorphic functions defined on a polydisk, volume 48 of Operator Theory: advances and applications, pp. 47–66. Birkhäuser, Basel (1990)

    Google Scholar 

  2. Aizenberg, L.A., Yuzhakov, A.P.: Integral Representations and Residues in Multidimensional Complex Analysis, volume 58 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1983. Translated from the 1979 Russian original by H. H. McFaden, Translation edited by Lev J. Leifman

  3. Alpay, D., Jorgensen, P., Lewkowicz, I., Volok, D.: A new realization of rational functions, with applications to linear combination interpolation, the Cuntz relations and kernel decompositions. Complex Var. Elliptic Equ. 61(1), 42–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alpay, D., Kaptanoğlu, H.T.: Some finite-dimensional backward shift-invariant subspaces in the ball and a related interpolation problem. Integral Equ. Oper. Theory 42, 1–21 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ball, J.A., Bolotnikov, V.: Realization and interpolation for Schur–Agler-class functions on domains with matrix polynomial defining function in \({\mathbb{C}}^n\). J. Funct. Anal. 213(1), 45–87 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ball, J.A., Gohberg, I., Rodman, L.: Interpolation of rational matrix functions, volume 45 of operator theory: advances and applications. Birkhäuser, Basel (1990)

    Book  MATH  Google Scholar 

  7. Ball, J.A., Kaliuzhnyi-Verbovetskyi, D.S.: Schur–Agler and Herglotz–Agler classes of functions: positive-kernel decompositions and transfer-function realizations. Adv. Math. 280, 121–187 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berenstein, C.A., Gay, R., Vidras, A., Yger, A.: Residue currents and Bezout identities, volume 114 of progress in mathematics. Birkhäuser, Basel (1993)

    Book  MATH  Google Scholar 

  9. Berenstein, C.A., Yger, A.: Residue calculus and effective Nullstellensatz. Am. J. Math. 121(4), 723–796 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boyer, J.-Y., Hickel, M.: Extension dans un cadre algébrique d’une formule de Weil. Manuscr. Math. 98(2), 195–223 (1999)

    Article  MATH  Google Scholar 

  11. Cardinal, J.P., Mourrain, B.: Algebraic approach of residues and Applications. In: The Mathematics of Numerical Analysis (Proc. 1995 AMS-SIAM Summer Seminar in Applied Mathematics, Park City, UT, 1995, J. Renegar, M. Shub, S. Smale eds.), volume 32 of Lectures in Appl. Math., pp. 189–210. American Mathematical Society, Providence, RI (1996)

  12. de Boor, C.: Ideal interpolation. In: Chui, C.K., Neamtu, M., Schumaker, L.L. (eds.) Approximation Theory XI. Gaitlinburg 2004, pp. 59–91. Nashboro Press, Brentwood, TR (2005)

  13. Elkadi, M., Mourrain, B.: Introduction à la résolution des systèmes polynomiaux, volume 59 of Mathématiques & Applications (Berlin). Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  14. Gleason, A.: The Cauchy-Weil theorem. J. Math. Mech. 12, 429–444 (1963)

    MathSciNet  MATH  Google Scholar 

  15. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley-Intersciences, New York (1978)

    MATH  Google Scholar 

  16. Jelonek, Z.: On the effective Nullstellensatz. Invent. Math. 162(1), 1–17 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kollár, J.: Sharp effective nullstellensatz. J. Am. Math. Soc. 1(4), 963–975 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Płoski, A.: On the Noether exponent. Bull. Soc. Sci. Lett. Lédz 40, Sér. Rech. Déform. 8, 23–29 (1990)

  19. Samuelsson, H.: Analytic continuation of residue currents. Ark. Mat. 47(1), 127–141 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tsikh, A.K.:Multidimensional Residues and Their Applications, volume 103 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI (1992). Translated from the 1988 Russian original by E. J. F. Primrose, Translation edited by S. Gelfand

  21. Tsikh, A., Yger, A.: Residue currents. J. Math. Sci. (N. Y.) 120(6), 1916–1971 (2004). (Complex analysis)

    Article  MathSciNet  MATH  Google Scholar 

  22. Weil, A.: L’intégrale de Cauchy et les fonctions de plusieurs variables. Math. Ann. 111, 178–182 (1935)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Yger.

Additional information

Communicated by Arno Kuijlaars.

The authors thank the Foster G. and Mary McGaw Professorship in Mathematical Sciences, which supported this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpay, D., Yger, A. About a Non-Standard Interpolation Problem. Comput. Methods Funct. Theory 19, 97–115 (2019). https://doi.org/10.1007/s40315-018-0255-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-018-0255-1

Keywords

Mathematics Subject Classification

Navigation