Skip to main content
Log in

Curie depth estimated from high-resolution aeromagnetic data of parts of lower and middle Benue trough (Nigeria)

  • Original Study
  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

To quantitatively understand the geodynamic process of a region, study of geothermal parameters underneath the earth surface is very paramount. Curie depth can be an alternative to delineate geothermal parameters. In the present study, we estimated Curie depths from the power spectra of 25 equally window sizes areas/points with 50% overlap extracted from high-resolution aeromagnetic anomalies of parts of lower and middle Benue Trough, Nigeria using modified centroid method based on fractal distribution of magnetic sources. Curie depths with associated uncertainties calculated from the region under study are between 11 ± 2 and 27 ± 2 km. The shallowest depth (11 ± 2) km is calculated around the area of Abakaliki whereas the deepest depth is calculated around Otukpa area of Anambra basin. The shallowest Curie depth as calculated is related with the Abakaliki anticlinorium while the deepest result is in connection with the Anambra basin. These suggest that different geological structures and magnetic anomalies (i.e. high or low magnetic anomaly) influenced the calculated Curie depth results. In the region, it is noted that lower Curie depths (14–18 km) are recorded over the basement rocks and Curie depths between 18 and 22 km within zones of volcanoes. The interpretation hypothesized presence of underplating in the crust and possibly mantle plume as a result of the Mesozoic–Cenozoic volcanic magmatism (magmatic centers) mostly basalts distributed and scattered in the region. It has also been hypothesized that the uncertainties calculated (± 0.2 to ± 5.0) in the region correlate more strongly with the geology, tectonic structures and type of anomalies than estimated Curie depths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdullahi M, Singh UK (2018) Basement geology derived from gravity anomalies beneath the Benue Trough of Nigeria. Arab J Geosci 11:694

    Article  Google Scholar 

  • Abdullahi M, Singh UK, Roshan R (2019a) Mapping magnetic lineaments and subsurface basement beneath parts of Lower Benue Trough (LBT), Nigeria: insights from integrating gravity, magnetic and geologic data. J Earth Syst Sci 128:17

    Article  Google Scholar 

  • Abdullahi M, Kumar R, Singh UK (2019b) Magnetic basement depth from high-resolution aeromagnetic data of parts of lower and middle Benue Trough (Nigeria) using scaling spectral method. J Afr Earth Sci 150:337–345

    Article  Google Scholar 

  • Abdullahi M, Singh UK, Modibbo UM (2019c) Crustal structure of southern Benue Trough, Nigeria from 3D inversion of gravity data. J Geol Min Res 11(4):39–47

    Article  Google Scholar 

  • Adighije C (1981) A gravity interpretation of the Benue Trough, Nigeria. Tectonophysics 79:109–128

    Article  Google Scholar 

  • Agagu OK, Adighije CI (1983) Tectonic and sedimentation framework of the lower Benue Trough, southeastern Nigeria. J Afr Earth Sci 1(3/4):267–274

    Google Scholar 

  • Ajayi CO, Ajakaiye DE (1981) The origin and perculiarities of the Nigerian Benue Trough: another look from recent gravity data obtained from middle Benue. Tectonophysics 80:285–303

    Article  Google Scholar 

  • Ajayi CO, Ajakaiye DE (1986) Structures deduced from gravity data in the middle Benue Trough, Nigeria. J Afr Earth Sci 5:359–369

    Google Scholar 

  • Akpan O, Nyblade A, Okereke C, Oden M, Emry E, Julià J (2016) Crustal structure of Nigeria and Southern Ghana, West Africa from P-wave receiver functions. Tectonophysics 676:250–260

    Article  Google Scholar 

  • Anudu GK, Stephenson RA, Macdonald DIM (2014) Using high-resolution aeromagnetic data to recognize and map intra-sedimentary volcanic rocks and geological structures across the Cretaceous middle Benue Trough, Nigeria. J Afr Earth Sci 99:1–12

    Article  Google Scholar 

  • Avbovbo AA (1978) Geothermal gradients in the Southern Nigerian basins. Bull Can Petrol Geol 26(2):268–274

    Google Scholar 

  • Bansal AR, Dimri VP (2013) Modelling of magnetic data for scaling geology. Geophys Prospect 62(2):385–396

    Article  Google Scholar 

  • Bansal AR, Gabriel G, Dimri VP (2010) Power law distribution of susceptibility and density and its relation to seismic properties: an example from the German Continental Deep Drilling Program. J Appl Geophys 72:123–128

    Article  Google Scholar 

  • Bansal AR, Gabriel G, Dimri VP, Krawczyk CM (2011) Estimation of the depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: an application to aeromagnetic data in Germany. Geophysics 76:L11–L22

    Article  Google Scholar 

  • Bansal AR, Anand SP, Rajaram M, Rao VK, Dimri VP (2013) Depth to the bottom of magnetic sources (DBMS) from aeromagnetic data of central India using modified centroid method for fractal distribution of sources. Tectonophysics 603:155–161

    Article  Google Scholar 

  • Bansal AR, Dimri VP, Kumar R, Anand SP (2016) Curie depth estimation from aeromagnetic for fractal distribution of sources. In: Dimri VP (ed) Fractal solutions for understanding complex system in earth sciences. Springer, Berlin, pp 19–31

    Chapter  Google Scholar 

  • Benkhelil J (1982) Benue trough and Benue chain. Geol Mag 119:155–168

    Article  Google Scholar 

  • Benkhelil J (1989) The origin and evolution of the Cretaceous Benue Trough (Nigeria). J Afr Earth Sci 6:251–282

    Article  Google Scholar 

  • Bhattacharyya BK (1996) Continuous spectrum of the total magnetic field anomaly due to a rectangular prismatic body. Geophysics 31:97–121

    Article  Google Scholar 

  • Bhattacharyya BK, Leu LK (1975) Analysis of magnetic anomalies over Yellowstone National Park: mapping of Curie point isothermal surface for geothermal reconnaissance. J Geophys Res 80:4461–4465

    Article  Google Scholar 

  • Bhattacharyya BK, Leu LK (1977) Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies. Geophysics 42:41–50

    Article  Google Scholar 

  • Blakely RJ (1988) Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada. J Geophys Res 93:11817–11832

    Article  Google Scholar 

  • Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bouligand C, Glen JMG, Blakely RJ (2009) Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization. J Geophys Res 114:B11104

    Article  Google Scholar 

  • Burke KC, Whiteman AJ (1973) Uplift, rifting and break-up of Africa. In: Tarling DH, Runcon SK (eds) Implications on continental drift to Earth sciences. Academic Press, Cambridge, pp 735–755

    Google Scholar 

  • Burke K, Dcssauvagie TFJ, Whiteman AJ (1972) Geological history of the Benue Valley and adjacent areas. In: Dessauvagie TFJ, Whiteman AJ (eds) African geology. Ibadan University Press, Ibadan, pp 187–206

    Google Scholar 

  • Carter JD, Barber W, Tait EA, Jones GP (1963) The geology of parts of Adamawa, Bauchi and Bornu Provinces in northeastern Nigeria. Bull Geol Soc Nigeria 30:109

    Google Scholar 

  • Chiozzi P, Matsushima J, Okubo Y, Pasquale V, Verdoya M (2005) Curie-point depth from spectral analysis of magnetic data in central-southern Europe. Phys Earth Planet Inter 152(4):267–276

    Article  Google Scholar 

  • Chukwu CG, Udensi EE, Abraham EM, Ekwe AC, Selemo AO (2017) Geothermal energy potential from analysis of aeromagnetic data of part of the Niger-delta basin, southern Nigeria. Energy 143:846–853

    Article  Google Scholar 

  • Cratchley CR, Jones GP (1965) An interpretation of the geology and gravity anomalies of the Benue Valley Nigeria. Oversea Geological Survey London. Geophysics paper no. 1

  • Dunlop DJ, Ozdemir O (1997) Rock magnetism. Fundamentals and frontiers. Cambridge studies in magnetism series. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fairhead JD, Binks RM (1991) Differential opening of the Central and South Atlantic Oceans and the opening of the West African rift system. Tectonophysics 187:191–203

    Article  Google Scholar 

  • Fairhead JD, Okereke CS (1987) A regional gravity study of the West African rift system in Nigeria and Cameroon and its tectonic implication. Tectonophysics 143:141–159

    Article  Google Scholar 

  • Fairhead JD, Okereke CS (1988) Depth to major density contrasts beneath the West African rift system in Nigeria and Cameroon based on spectral analysis of gravity data. J Afr Earth Sci 7:769–777

    Article  Google Scholar 

  • Fairhead JD, Okereke CS, Nnange JM (1991) Crustal structure of the Mamfe basin, West Africa based on gravity data. Tectonophysics 186:351–358

    Article  Google Scholar 

  • Falconer JD (1911) The geology and geography of northern Nigeria. Macmillan, London

    Google Scholar 

  • Farrington JL (1952) A preliminary description of the Nigerian lead–zinc field. Econ Geol 47:583–608

    Article  Google Scholar 

  • Fedi M, Quarta T, Santis AD (1997) Inherent power-law behavior of magnetic field power spectra from a Spector and Grant ensemble. Geophysics 62:1143–1150

    Article  Google Scholar 

  • King LC (1950) Outline and disruption of Gondwanaland. Geol Mag 87:353–359

    Article  Google Scholar 

  • Kumar R, Bansal AR, Anand SP, Rao VK, Singh UK (2018) Mapping of magnetic basement in Central India from aeromagnetic data for scaling geology. Geophys Prospect 66:226–239

    Article  Google Scholar 

  • Kumar R, Bansal AR, Ghods A (2020) Estimation of depths to bottom of magnetic sources using spectral methods: application on Iran’s aeromagnetic data. J Geophys Res Solid Earth 125:e2019JB018119

    Article  Google Scholar 

  • Li C-F, Wang J, Lin J, Wang T (2013) Thermal evolution of the North Atlantic lithosphere: new constraints from magnetic anomaly inversion with a fractal magnetization model. Geochem Geophy Geosyst 12:5078–5105

    Article  Google Scholar 

  • Li C-F, Lu Y, Wang J (2017) A global reference model of Curie-point depths based on EMAG2. Sci Rep 7:45129

    Article  Google Scholar 

  • Maluski H, Coulon C, Popoff M, Baudin P (1995) 40Ar/39Ar chronology, petrology and geodynamic setting of Mesozoic to early Cenozoic magmatism from the Benue Trough, Nigeria. J Geol Soc Lond 152:311–326

    Article  Google Scholar 

  • Maus S, Dimri VP (1994) Scaling properties of potential fields due to scaling sources. Geophys Res Lett 21:891–894

    Article  Google Scholar 

  • Maus S, Dimri VP (1995) Potential field power spectrum inversion for scaling geology. J Geophys Res 100:12605–12616

    Article  Google Scholar 

  • Maus S, Dimri VP (1996) Depth estimation from the scaling power spectrum of potential fields. Geophys J Int 124:113–120

    Article  Google Scholar 

  • Maus S, Gordon D, Fairhead JD (1997) Curie temperature depth estimation using a self-similar magnetization model. Geophys J Int 129:163–168

    Article  Google Scholar 

  • McCurry P (1976) The geology of the Precambrian to Lower Palaeozoic rocks of Northern Nigeria—a review. In: Kogbe CA (ed) Geology of Nigeria. Elizabethan Publication Company, Lagos, pp 15–39

    Google Scholar 

  • Nwachukwu SO (1972) The tectonic evolution of the southern portion of the Benue Trough, Nigeria. Geol Mag 109:411–419

    Article  Google Scholar 

  • Nwachukwu SO (1976) Approximate geothermal gradients in the Niger delta sedimentary basins. Am Assoc Pet Geol 60(7):1073–1077

    Google Scholar 

  • Nwankwo LI (2015) Estimation of depths to the bottom of magnetic sources and ensuing geothermal parameters from aeromagnetic data of Upper Sokoto Basin Nigeria. Geothermics 54:76–81

    Article  Google Scholar 

  • Obaje NG (2009) Geology and mineral resources of Nigeria. Springer, Dordrecht, p 221

    Book  Google Scholar 

  • Ofoegbu CO (1984) Interpretation of aeromagnetic anomalies over Lower and Middle Benue Trough of Nigeria. Geophys J R Astron Soc 79:813–823

    Article  Google Scholar 

  • Ofoegbu CO (1985) A review of the geology of the Benue Trough, Nigeria. J Afr Earth Sci 3(3):283–291

    Google Scholar 

  • Ofoegbu CO, Onuoha KM (1991) Analysis of magnetic data over the Abakaliki Anticlinorium of the Lower Benue Trough, Nigeria. Mar Pet Geol 8:174–183

    Article  Google Scholar 

  • Ogunmola JK, Ayolabi EA, Olobaniyi SB (2016) Structural-depth analysis of the Yola Arm of the Upper Benue Trough of Nigeria using high resolution aeromagnetic data. J Afr Earth Sci 124:32–43

    Article  Google Scholar 

  • Oha IA, Onuoha KM, Nwegbu AN, Abba AU (2016) Interpretation of high resolution aeromagnetic data over southern Benue Trough, southeastern Nigeria. J Earth Syst Sci 125:369–385

    Article  Google Scholar 

  • Okereke CS (1988) Contrasting modes of rifting: the Benue Trough and Cameroon volcanic line, West Africa. Tectonics 7(4):775–784

    Article  Google Scholar 

  • Okubo Y, Graf RJ, Hansen RO, Ogawa K, Tsu H (1985) Curie point depths of the island of Kyushu and surrounding area, Japan. Geophysics 50:481–489

    Article  Google Scholar 

  • Onuoha KM, Ekine AS (1999) Subsurface temperature variations and heat flow in the Anambra basin, Nigeria. J Afr Earth Sci 28(3):641–652

    Article  Google Scholar 

  • Onwuemesi AG (1997) One-dimensional spectral analysis of aeromagnetic anomalies and curie depth isotherm in the Anambra basin of Nigeria. J Geodyn 23(2):95–107

    Article  Google Scholar 

  • Oyawoye MO (1972) The basement complex of Nigeria. In: Dessauvagie TFJ, Whiteman AJ (eds) African geology. Ibadan University Press, Ibadan, pp 67–113

    Google Scholar 

  • Pilkington M, Todoeschuck JP (1993) Fractal magnetization of continental crust. Geophys Res Lett 20:627–630

    Article  Google Scholar 

  • Pilkington M, Todoeschuck JP (1995) Scaling nature of crustal susceptibilities. Geophys Res Lett 22:779–782

    Article  Google Scholar 

  • Pilkington M, Gregotski ME, Todoeschuck JP (1994) Using fractal crustal magnetization models in magnetic interpretation. Geophys Prospect 42:677–692

    Article  Google Scholar 

  • Rajaram M, Anand SP, Hemant K, Purucker ME (2009) Curie isotherm map of Indian subcontinent from satellite and aeromagnetic data. Earth Planet Sci Lett 281(3–4):147–158

    Article  Google Scholar 

  • Ravat D, Pignatelli A, Nicolosi I, Chiappini M (2007) A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophys J Int 169:421–434

    Article  Google Scholar 

  • Ravat D, Morgan P, Lowry AR (2016) Geotherms from the temperature-depth-constrained solutions of 1-D steady-state heat-flow equation. Geosphere 12(4):1187–1197

    Article  Google Scholar 

  • Ross HE, Blakely RJ, Zoback MD (2006) Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics 71:L51–L59

    Article  Google Scholar 

  • Salem A, Green C, Ravat D, Singh HK, East P, Fairhead JD, Morgen S, Biegert E (2014) Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method. Tectonophysics 624–625:75–86

    Article  Google Scholar 

  • Shuey RT, Schellinger DK, Tripp AC, Alley LB (1977) Curie depth determination from aeromagnetic spectra. Geophys J R Astron Soc 50:75–101

    Article  Google Scholar 

  • Spector A, Grant FS (1970) Statistical model for interpreting aeromagnetic data. Geophysics 35:293–302

    Article  Google Scholar 

  • Stoneley R (1966) The Niger delta region in the light of the theory of continental drift. Geol Mag 103:385–397

    Article  Google Scholar 

  • Tanaka A, Okubo Y, Matsubayashi O (1999) Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 306:461–470

    Article  Google Scholar 

  • Tokam KAP, Tabod CT, Nyblade AA, Julià J (2010) Structure of the crust beneath Cameroon, West Africa, from the joint inversion of Rayleigh wave group velocities and receiver functions. Geophys J Int 183:1061–1076

    Article  Google Scholar 

  • Trifonova P, Zhelev Z, Petrova T, Bojadgieva K (2009) Curie point depths of Bulgarian territory inferred from geomagnetic observations and its correlation with regional thermal structure and seismicity. Tectonophysics 473(3–4):362–374

    Article  Google Scholar 

  • Tugume S, Nyblade A, Julià J, Meijde MV (2013) Precambrian crustal structure in Africa and Arabia: evidence lacking for secular variation. Tectonophysics 609:250–266

    Article  Google Scholar 

  • Wright JB (1976) Origins of the Benue Trough—a critical reviews. In: Kogbe CA (ed) Geology of Nigeria. Elizabethan publication co., Lagos, pp 313–318

    Google Scholar 

Download references

Acknowledgements

The authors acknowledged the Nigerian Geological Survey Agency (NGSA), Abuja office for providing the high-resolution aeromagnetic data for this work. We are also happy to acknowledge the constructive comments of the two anonymous reviewers and the editor; Prof. Norbert Péter Szabó. The comments have improved the original submission of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukaila Abdullahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullahi, M., Kumar, R. Curie depth estimated from high-resolution aeromagnetic data of parts of lower and middle Benue trough (Nigeria). Acta Geod Geophys 55, 627–643 (2020). https://doi.org/10.1007/s40328-020-00314-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-020-00314-4

Keywords

Navigation