Skip to main content
Log in

Series solution of magneto-hydrodynamic boundary layer flow over bi-directional exponentially stretching surfaces

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This study investigated theoretically the problem of three-dimensional, magnetohydrodynamic, boundary layer flow of a Jeffrey fluid with heat transfer in the presence of thermal radiation over an exponentially stretching surface. Highly nonlinear coupled partial differential equations are obtained using boundary layer approach. These equations are reduced to a set of ordinary differential equations using appropriate similarity transformations. The solution of the problem is found with the help of homotopy analysis method along with optimal homotopy analysis method to find optimal/best value for the convergence control parameter appearing in a series solution. The solution behaviors, for different emerging parameters, of velocity profiles (along \(x\) and \(y\) direction) as well as temperature profile are investigated and the effect of these parameters are explained through graphs. Moreover, for the present study, effective Prandtl number is used in the description of temperature profile. The skin friction coefficients along \(x\)-axis and \(y\)-axis are also discussed through graphs. The tabulated values of dimensionless heat transfer coefficient, Nusselt number, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sakiadis BC (1961) Boundary layer behavior on continuous solid surface: I boundary layer equations for two dimensional and axi-symmetric flow. AIChE J. 7(1):26–28

    Article  Google Scholar 

  2. Crane LJ (1970) Flow past a stretching plate. Z Angew Math Phys 21:645–647

    Article  Google Scholar 

  3. Chen CK, Char M-I (1988) Heat transfer of a continuous stretching surface with suction or blowing. Anal Appl 135(2):568–580

    Article  MATH  MathSciNet  Google Scholar 

  4. Mastroberardino A (2014) Accurate solutions for viscoelastic boundary layer flow and heat transfer over stretching sheet. Appl Math Mech Engl Ed 35(2):133–142

    Article  MathSciNet  Google Scholar 

  5. Erickson LE, Fan LT, Fox VG (1966) Heat and Mass transfer in the laminar boundary layer flow of a moving surface with constant surface velocity and temperature focusing on the effects of suction/injection. Ind Eng Chem Fund 5:19–25

    Article  Google Scholar 

  6. Gurbaka LJ, Bobba KM (1985) Heat transfer characteristics of a continuous stretching surface with variable temperature. J Heat Transf 107(1):248–250

    Article  Google Scholar 

  7. Nadeem S, Hussain ST (2014) Heat transfer analysis of Williamson fluid over exponentially stretching surface. Appl Math Mech Engl Ed 35(4):489–502

    Article  MATH  MathSciNet  Google Scholar 

  8. Liu IC (2005) A note on heat and mass transfer for a hydromagnetic flow over a stretching sheet. Int Commun Heat Mass Transf 32(8):1075–1084

    Article  Google Scholar 

  9. Biliana B, Roslinda N (2009) Numerical solution of the boundary layer flow over an exponentially stretching sheet with thermal radiation. Eur J Sci Res 33(4):710–717

    Google Scholar 

  10. Vajravelu K, Prasad KV, Lee J, Lee C, Pop I, Van Gorder RA (2011) Convective heat transfer in the flow of viscous Ag-water and Cu-water nanofluids over a stretching surface. Int J Therm Sci 50(5):843–851

    Article  Google Scholar 

  11. Jat RN, Chand G (2013) MHD flow and heat transfer over an exponentially stretching sheet with viscous dissipation and radiation effects. Appl Math Sci 7(4):167–180

    MathSciNet  Google Scholar 

  12. Hamad MAA, Ferdows M (2012) Similarity solutions to viscous flow and heat transfer of nanofluid over nonlinearly stretching sheet. Appl Math Mech Engl Ed 33(7):923–930

    Article  MATH  MathSciNet  Google Scholar 

  13. Nadeem S, Lee C (2012) Boundary layer flow of nanofluid over an exponentially stretching surface. Nanoscale Res Lett 7:94

    Article  Google Scholar 

  14. Gireesha BJ, Roopa GS, Bagewadi CS (2012) Effect of viscous dissipation and heat source on flow and heat transfer of dusty fluid over unsteady stretching sheet. Appl Math Mech Engl Ed 33(8):1001–1014

    Article  MathSciNet  Google Scholar 

  15. Qasim M, Khan I, Shafie S (2013) Heat transfer in a micropolar fluid over a stretching sheet with Newtonian heating. PLoS One 8(4)

  16. Nadeem S, Hussain ST, Lee C (2013) Flow of a Williamson fluid over a stretching sheet. Braz J Chem Eng 30(3):619–625

    Article  Google Scholar 

  17. Shehzad SA, Alsaedi A, Hayat T (2013) Hydromagnetic steady flow of Maxwell fluid over a bidirectional stretching surface with prescribed surface temperature and prescribed surface heat flux. PLoS One 8(7):e68139. doi:10.1371/journal.pone.0068139

    Article  MathSciNet  Google Scholar 

  18. Nadeem S, Ul Haq R, Akbar NS, Lee C, Khan ZH (2013) Numerical study of boundary layer flow and heat transfer of oldroyd-B nanofluid towards a stretching sheet. PLoS One 8(8):e69811. doi:10.1371/journal.pone.0069811

    Article  Google Scholar 

  19. Hayat T, Shafiq A, Alsaedi A (2014) Effect of Joule heating and thermal radiation in flow of third grade fluid over radiative surface. PLoS One 9(1):e83153. doi:10.1371/journal.pone.0083153

    Article  Google Scholar 

  20. Gupta PS, Gupta AS (1977) Heat and mass transfer on a stretching sheet with suction or blowing. Can J Chem Eng 55(6):744–746

    Article  Google Scholar 

  21. Magyari E, Keller B (1999) Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J Phys D Appl Phys 32(5):577–585

    Article  Google Scholar 

  22. Nadeem S, Akram S (2010) Slip effects on the peristaltic flow of a Jeffrey fluid in an asymmetric channel under the effect of induced magnetic field. Int J Numer Methods Fluids 63(3):374–394

    Article  MATH  MathSciNet  Google Scholar 

  23. Nadeem S, Hussain A, Khan M (2010) Stagnation flow of a Jeffrey fluid over a shrinking sheet. M Z Naturforsch C 65(a):540–548

    Google Scholar 

  24. Turkyilmazoglu M, Pop I (2013) Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid. Int J Heat Mass Trans 57(1):82–88

    Article  Google Scholar 

  25. Qasim M (2013) Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sink. Alex Eng J 52(4):571–575

    Article  Google Scholar 

  26. Nadeem S, Akram S (2010) Peristaltic flow of a Jeffrey fluid in a rectangular duct. Nonlinear Anal Real World Appl 11(5):4238–4247

    Article  MATH  MathSciNet  Google Scholar 

  27. Nadeem S, Abbasbandy S, Hussain M (2009) Series solutions of boundary layer flow of a micropolar fluid near the stagnation point towards a shrinking sheet. Z Naturforsch C 64(a):575–582

    Google Scholar 

  28. Nadeem S, Sadiq MA, Choi J, Lee C, Int C (2014) J Nonlinear Sci Numer Simul 15(3–4):171

  29. Nadeem S, Zaheer S, Fang T (2011) Effects of thermal radiation on the boundary layer flow of a Jeffrey fluid over an exponentially stretching surface. Numer Algorithms 57(2):187–205

    Article  MATH  MathSciNet  Google Scholar 

  30. Liu IC, Wang HH, Peng YF (2012) Heat transfer for three dimensional flow over an exponentially stretching surface. Chem Eng Commun 200(2):253–268

    Article  Google Scholar 

  31. Magyari E, Pantokratoras A (2011) A Note on the effects of thermal radiationin linearized Rosseland approximation on the heat transfer characteristic of various boundary layer flow. Int Commun Heat Mass Trans 38(5):554–556

    Article  Google Scholar 

  32. Magyari E (2010) Comments on mixed convection boundary layer flow over a horizontal plate with thermal radiation by A. Ishak. Heat Mass Trans 46(8–9):809–810

    Article  Google Scholar 

  33. Liao S (2003) Beyond perturbation: introduction to the homotopy analysis method, vol 99. Chapman and Hall/CRC

  34. Nadeem S, Haq R (2012) MHD boundary layer flow of nanofluid past a porous shrinking sheet with thermal radiation. J Aero Eng. doi:10.1061/(ASCE)AS.1943-5525.0000299

  35. Abbasbandy S (2007) The application of homotopy analysis method to solve a generalized Hirota-Satsuma couple KdV equation. Phys Lett A 361(6):478–483

    Article  MATH  Google Scholar 

  36. Ellahi R (2009) Effects of the slip boundary condition on non-Newtonian flows in a channel. Commun Nonlinear Sci Numer Simul 14(4):1377–1384

    Article  Google Scholar 

  37. Liao S (2012) Homotopy analysis method in nonlinear differential equations. Springer and Higher Education Press, Heidelberg

    Book  MATH  Google Scholar 

  38. Nofal TA (2007) An approximation of the analytical solution of the Jeffery-Hamel flow by homotopy analysis method. Appl Math Sci 5(53):2603–2615

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by a National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIP) (20090093134, 2014R1A2A2A01006544).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhoon Lee.

Additional information

Technical Editor: Francisco Ricardo Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ur-Rehman, S., Nadeem, S. & Lee, C. Series solution of magneto-hydrodynamic boundary layer flow over bi-directional exponentially stretching surfaces. J Braz. Soc. Mech. Sci. Eng. 38, 443–453 (2016). https://doi.org/10.1007/s40430-015-0344-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0344-2

Keywords

Navigation