Skip to main content
Log in

Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a free vibration analysis of functionally graded materials nano-plate resting on Winkler–Pasternak elastic foundations based on two-variable refined plate theories including the porosities effect. The small-scale effects are introduced using the nonlocal elasticity theory with a new shear deformation function. The governing equations are obtained through the Hamilton’s principle. The effect of material property, porosities, various boundary conditions and elastic foundation stiffnesses on free vibration functionally graded materials nanoplate are also presented and discussed in detail. The present solutions are compared with those obtained by other researchers. The results are in a good agreement with those in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Koizumi M (1993) The concept of FGM. Ceram Trans Funct Gradient Mater 34:3–10

    Google Scholar 

  2. Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG (1999) Functionally graded materials: design, processing and application. Kluwer Academic Publishers, London

    Book  Google Scholar 

  3. Magnucka-Blandzi E (2009) Dynamic stability of a metal foam circular plate. J Theor Appl Mech 47:421–433

    MATH  Google Scholar 

  4. Magnucka-Blandzi E (2010) Non-linear analysis of dynamic stability of metal foam circular plate. J Theor Appl Mech 48(1):207–217

    Google Scholar 

  5. Magnucka-Blandzi E (2008) Axi-symmetrical deflection and buckling of circular porous-cellular plate. Thin-Walled Struct 46(3):333–337

    Article  Google Scholar 

  6. Belica T, Magnucki K (2006) Dynamic stability of a porous cylindrical shell. PAMM 6(1):207–208

    Article  Google Scholar 

  7. Belica T, Magnucki K (2013) Stability of a porous-cellular cylindrical shell subjected to combined loads. J Theor Appl Mech 51(4):927–936

    Google Scholar 

  8. Wattanasakulpong N, Ungbhakor V (2014) Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerospace Sci Technol 32:111–120

    Article  Google Scholar 

  9. Wattanasakulpong N, Prusty BG, Kelly DW, Hoffman M (2012) Free vibration analysis of layered functionally graded beams with experimental validation. Mater Des 36:182–190

    Article  Google Scholar 

  10. Ebrahimi F, Mokhtari M (2015) Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method. J Braz Soc Mech Sci Eng 37(4):1435–1444

    Article  Google Scholar 

  11. Winkler E (1867) Die Lehre von der Elasticitaet und Festigkeit, Teil 1,2. Dominicus, Prague, (As noted in L.Fryba, History of Wincler Foundation, Vehicle system dynamics supplement 24:7–12

  12. Pasternak PL (1954) On a new method of analysis of an elastic foundation by means of two foundation constants.Cosudarstrennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture. USSR, Moscow, pp 1–56

  13. Reissner E (1945) the effect of transverse shear deformation on the bending of elastic plates. Trans ASME J Appl Mech 12:69–77

    MathSciNet  MATH  Google Scholar 

  14. Mindlin RD (1951) Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. Trans ASME J Appl Mech 18:31–38

    MATH  Google Scholar 

  15. Librescu L (1967) On the theory of anisotropic elastic shells and plates. Int J Solids Struct 3:53–68

    Article  Google Scholar 

  16. Levinson M (1980) An accurate simple theory of the static and dynamics of elastic plates. Mech Res Commun 7:343–350

    Article  MATH  Google Scholar 

  17. Bhimaraddi A, Stevens LK (1984) A higher order theory for free vibration of orthotropic, homogeneous and laminated rectangular plates. Trans ASME J Appl Mech 51:195–198

    Article  Google Scholar 

  18. Reddy JN (1984) A simple higher-order theory for laminated composite plates. Trans ASME J Appl Mech 51:745–752

    Article  MATH  Google Scholar 

  19. Ren JG (1986) A new theory of laminated plate. Compos Sci Technol 26:225–239

    Article  Google Scholar 

  20. Kant T, Pandya BN (1988) A simple finite element formulation of a higher-order theory for unsymmetrically laminated composite plates. Comp Struct 9:215–264

    Article  Google Scholar 

  21. Zenkour AM (2004) Analytical solution for bending of cross-ply laminated plates under thermo-mechanical loading. Comp Struct 65:367–379

    Article  Google Scholar 

  22. Shimpi RP (2002) Refined plate theory and its variants. AIAA J 40:137–146

    Article  Google Scholar 

  23. Shimpi RP, Patel HG (2006) A two variable refined plate theory for orthotropic plate analysis. Int J Solids Struct 43:6783–6799

    Article  MATH  Google Scholar 

  24. Shimpi RP, Patel HG (2006) Free vibrations of plate using two variable refined plate theory. J Sound Vib 296:979–999

    Article  MATH  Google Scholar 

  25. Kim SE, Thai HT, Lee J (2009) A two variable refined plate theory for laminated composite plates. Compos Struct 89:197–205

    Article  Google Scholar 

  26. El Meiche N, Tounsi A, Ziane N, Mechab I, Adda Bedia EA (2011) A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. Int J Mech Sci 53:237–247

    Article  Google Scholar 

  27. Mechab I, Ait Atmane H, Tounsi A, Belhadj HA, Adda Bedia EA (2010) A two variable refined plate theory for the bending analysis of functionally graded plates. Acta Mech Sin 26:941–949

    Article  MathSciNet  MATH  Google Scholar 

  28. Mechab I, Mechab B, Benaissa S (2013) Static and dynamic analysis of functionally graded plates using Four-variable refined plate theory by the new function. Compos Part B 45:748–757

    Article  Google Scholar 

  29. Thai Huu-Tai, Choi Dong-Ho (2013) Analytical solutions of refined plate theory for bending, buckling and vibration analyses of thick plates. Appl Math Model 37:8310–8323

    Article  MathSciNet  Google Scholar 

  30. Thai H-T, Kim S-E (2012) Levy-type solution for free vibration analysis of orthotropic plates based on two variable refined plate theory. Appl Math Model 36:3870–3882

    Article  MathSciNet  MATH  Google Scholar 

  31. Kim SE, Thai HT, Lee J (2009) Buckling analysis of plates using the two variable refined plate theory. Thin Wall Struct 47:455–462

    Article  Google Scholar 

  32. Thai HT, Kim SE (2010) free vibration of laminated composite plates using two variable refined plate theory. Int J Mech Sci 52:626–633

    Article  Google Scholar 

  33. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  Google Scholar 

  34. Eringen AC (2002) Nonlocal continuum field theories. Springer, New York

    MATH  Google Scholar 

  35. Lu BP, Zhang PQ, Lee HP, Wang CM, Reddy JN (2007) Non-local elastic plate theories. Proc R Soc A 463:3225–3240

    Article  MathSciNet  MATH  Google Scholar 

  36. Aghababaei R, Reddy JN (2009) Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. J Sound Vib 326:277–289

    Article  Google Scholar 

  37. Lu P, Zhang PQ, Lee HP, Wang CM, Reddy JN (2007) Non-local elastic plate theories. Proc Roy Soc A Math Phys Eng Sci 463:3225–3240

    Article  MathSciNet  MATH  Google Scholar 

  38. Satish N, Narendar S, Gopalakrishnan S (2012) Thermal vibration analysis of orthotropic nanoplates based on nonlocal continuum mechanics. Phys E Low Dimens Syst Nanostruct 44:1950–1962

    Article  Google Scholar 

  39. Narendar S, Gopalakrishnan S (2012) Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory. Acta Mech 223:395–413

    Article  MathSciNet  MATH  Google Scholar 

  40. Nami MR, Janghorban M (2015) Free vibration analysis of rectangular nanoplates based on two-variable refined plate theory using a new strain gradient elasticity theory. J Braz Soc Mech Sci Eng 37(1):313–324

    Article  Google Scholar 

  41. Navazi HM, Haddadpour H, Rasekh M (2006) An analytical solution for nonlinear cylindrical bending of functionally graded plates. Thin Walled Struct 44:1129–1137

    Article  Google Scholar 

  42. Wakashima K, Hirano T, Niino M (1990) Space applications of advanced structural materials. ESA SP 330:97

    Google Scholar 

  43. Touratier M (1991) An efficient standard plate theory. Int J Eng Sci 29(8):901–916

    Article  MATH  Google Scholar 

  44. Zenkour AM, Sobhy M (2013) Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler-Pasternak elastic substrate medium. Phys E 53:251–259

    Article  Google Scholar 

  45. Sobhy M (2013) Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Compos Struct 99:76–87

    Article  Google Scholar 

  46. Shen HS, Chen Y, Yang J (2003) Bending and vibration characteristics of a strengthened plate under various boundary conditions. Eng Struct 25:1157–1168

    Article  Google Scholar 

  47. Alibeigloo A, Pasha Zanoosi AA (2013) Static analysis of rectangular nano-plate using three-dimensional theory of elasticity. Appl Math Model 37:7016–7026

    Article  MathSciNet  Google Scholar 

  48. Sobhy M (2015) A comprehensive study on FGM nanoplates embedded in an elastic medium. Compo Struct. doi:10.1016/j.compstruct.2015.08.102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Mechab.

Additional information

Technical Editor: Kátia Lucchesi Cavalca Dedini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mechab, I., Mechab, B., Benaissa, S. et al. Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories. J Braz. Soc. Mech. Sci. Eng. 38, 2193–2211 (2016). https://doi.org/10.1007/s40430-015-0482-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0482-6

Keywords

Navigation