Skip to main content
Log in

Influence of process parameters on the surface integrity of micro-holes of SS304 obtained by micro-EDM

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present research deals with the evaluation of surface integrity of micro-holes machined in stainless steel (SS304) sheet, using ultrasonic vibration-assisted micro-EDM process. Experimental results showed that pulse duration, gap voltage, and the application of ultrasonic vibration significantly affected the surface integrity in terms of the changes in recast layer thickness, micro-hardness, and the chemical composition of the machined surface. It is observed that the thickness of the recast layer is in the range of 6–23 µm, but the recast layer thickness was less with application of the ultrasonic vibration of the work piece. The heat-affected zone (HAZ) could not be observed both in FESEM and optical images. The micro-hardness in the HAZ was found in the range of 146–238 HV. The lower values of the micro-hardness were obtained with the application of vibration to the work piece. The changes in the chemical composition of the edge of the fabricated micro-holes were analyzed through EDS test, and it was found that lower amounts of carbon, oxygen, and tungsten were present in the machined surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cardoso P, Davim JP (2012) A brief review on micromachining of materials. Rev Adv Mater Sci 30:98–102

    Google Scholar 

  2. Câmara MA, Rubio JC, Abrão AM, Davim JP (2012) State of the art on micromilling of materials, a review. J Mater Sci Technol 28(8):673–685

    Article  Google Scholar 

  3. Cardoso P, Davim JP (2010) Optimization of surface roughness in micromilling. Mater Manuf Process 25(10):1115–1119

    Article  Google Scholar 

  4. Davim JP (2010) Micro and nanomanufacturing research. Nova Science Publishers, New York

    Google Scholar 

  5. Davim JP, Jackson MJ (eds) (2013) Nano and micromachining. John Wiley & Sons, New York

    Google Scholar 

  6. Das AK, Saha P (2014) Experimental investigation on micro-electrochemical sinking operation for fabrication of micro-holes. J Braz Soc Mech Sci Eng 37(2):657–663

    Article  MathSciNet  Google Scholar 

  7. Jahan MP, San Wong Y, Rahman M (2010) A comparative experimental investigation of deep-hole micro-EDM drilling capability for cemented carbide (WC-Co) against austenitic stainless steel (SUS 304). Int J Adv Manuf Tech 46(9–12):1145–1160

    Article  Google Scholar 

  8. Davim JP (2013) Nontraditional machining processes. Springer, London

    Book  Google Scholar 

  9. Jahan MP, Wong YS, Rahman M (2009) A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator. J Mater Process Tech 209(4):1706–1716

    Article  Google Scholar 

  10. Maity KP, Singh RK (2012) An optimisation of micro-EDM operation for fabrication of micro-hole. Int J Adv Manuf Tech 61(9–12):1221–1229

    Article  Google Scholar 

  11. Pham DT, Dimov SS, Bigot S, Ivanov A, Popov K (2004) Micro-EDM—recent developments and research issues. J Mater Process Tech 149(1):50–57

    Article  Google Scholar 

  12. Rahman M, Asad ABMA, Masaki T, Saleh T, Wong YS, Kumar AS (2010) A multiprocess machine tool for compound micromachining. Int J Mach Tool Manuf 50(4):344–356

    Article  Google Scholar 

  13. Kun Liu, Lauwers Bert, Reynaerts Dominiek (2010) Process capabilities of Micro-EDM and its applications. Int J Adv Manuf Tech 47(1-4):11–19

    Article  Google Scholar 

  14. D’Urso G, Maccarini G, Ravasio C (2015) Influence of electrode material in micro-EDM drilling of stainless steel and tungsten carbide. Int J Adv Manuf Tech 72:1–13

    Google Scholar 

  15. Endo T, Tsujimoto T, Mitsui K (2008) Study of vibration-assisted micro-EDM—the effect of vibration on machining time and stability of discharge. Precis Eng 32(4):269–277

    Article  Google Scholar 

  16. Jahan MP, Rahman M, Wong YS, Fuhua L (2010) On-machine fabrication of high-aspect-ratio micro-electrodes and application in vibration-assisted micro-electrodischarge drilling of tungsten carbide. Proc Inst Mech Eng B 224(5):795–814

    Article  Google Scholar 

  17. Huang H, Zhang H, Zhou L, Zheng HY (2003) Ultrasonic vibration assisted electro-discharge machining of microholes in Nitinol. J Micromech Microeng 13(5):693

    Article  Google Scholar 

  18. Dewangan S, Biswas CK, Gangopadhyay S (2014) Influence of different tool electrode materials on EDMed surface integrity of AISI P20 tool steel. Mater Manuf Process 29(11–12):1387–1394

    Article  Google Scholar 

  19. Rebelo JC, Dias AM, Kremer D, Lebrun JL (1998) Influence of EDM pulse energy on the surface integrity of martensitic steels. J Mater Process Tech 84(1):90–96

    Article  Google Scholar 

  20. Lee SH, Li X (2003) Study of the surface integrity of the machined work piece in the EDM of tungsten carbide. J Mater Process Tech 139(1):315–321

    Article  Google Scholar 

  21. Natarajan N, Suresh P (2015) Experimental investigations on the microhole machining of 304 stainless steel by micro-EDM process using RC-type pulse generator. Int J Adv Manuf Tech 77(9–12):1741–1750

    Article  Google Scholar 

  22. Sun XQ, Masuzawa T, Fujino M (1996) Micro ultrasonic machining and its applications in MEMS. Sens Actuators A 57(2):159–164

    Article  Google Scholar 

  23. Hung JC, Lin JK, Yan BH, Liu HS, Ho PH (2006) Using a helical micro-tool in micro-EDM combined with ultrasonic vibration for micro-hole machining. J Micromech Microeng 16(12):2705

    Article  Google Scholar 

  24. Davim JP (ed) (2010) Surface integrity in machining (Vol. 1848828742). Springer, London

    Google Scholar 

  25. Lim LC, Lee LC, Wong YS, Lu HH (1991) Solidification microstructure of electro discharge machined surfaces of tool steels. Mater Sci Tech Ser 7(3):239–248

    Article  Google Scholar 

  26. Ekmekci B (2009) White layer composition, heat treatment, and crack formation in electric discharge machining process. Metall Mater Trans B 40(1):70–81

    Article  Google Scholar 

  27. Amorim FL, Weingaertner WL (2004) Die-sinking electrical discharge machining of a high-strength copper-based alloy for injection molds. J Braz Soc Mech Sci Eng 26(2):137–144

    Article  Google Scholar 

  28. Bodziak S, de Souza AF, Rodrigues AR, Diniz AE, Coelho RT (2014) Surface integrity of moulds for microcomponents manufactured by micromilling and electro-discharge machining. J Braz Soc Mech Sci Eng 36(3):623–635

    Google Scholar 

  29. Ndaliman MB, Khan AA, & Ali MY (2013) Influence of electrical discharge machining process parameters on surface micro-hardness of titanium alloy. Proc Inst Mech Eng 0954405412470443

  30. Ndaliman MB, Khan AA, Ali MY (2012) Formation of nitrides and carbides on titanium alloy surface through EDM. Adv Mater Res 576:7–10

    Article  Google Scholar 

  31. Hasçalık A, Çaydaş U (2007) Electrical discharge machining of titanium alloy (Ti–6Al–4 V). Appl Surf Sci 253(22):9007–9016

    Article  Google Scholar 

  32. Dong C, Zhang J, Xu J, Song X, Zhao Y (2011) Microstructures and properties of electrical discharge strengthened layers on 65Mn steel. Appl Surf Sci 257(7):2843–2849

    Article  Google Scholar 

  33. Bleys P, Kruth JP, Lauwers B, Schacht B, Balasubramanian V, Froyen L, Van Humbeeck J (2006) Surface and sub-surface quality of steel after EDM. Adv Eng Mater 8(1–2):15–25

    Article  Google Scholar 

  34. Gill AS, Kumar S (2016) Surface roughness and microhardness evaluation for EDM with Cu–Mn powder metallurgy tool. Mater Manuf Process 31(4):514–521

    Article  Google Scholar 

  35. Wang M, Zhang Y, He Z, Peng W (2016) Deep micro-hole fabrication in EMM on stainless steel using disk micro-tool assisted by ultrasonic vibration. J Mater Process Technol 229:475–483

    Article  Google Scholar 

  36. Liu Q, Zhang Q, Zhu G, Wang K, Zhang J, Dong C (2016) Effect of electrode size on the performances of micro-EDM. Mater Manuf Process 31(4):391–396

    Article  Google Scholar 

  37. Singh AK, Patowari PK, Deshpande NV (2016) Experimental analysis of reverse micro-EDM for machining microtool. Mater Manuf Process 31(4):530–540

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kumar Das.

Additional information

Technical Editor: Márcio Bacci da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A.K., Kumar, P., Sethi, A. et al. Influence of process parameters on the surface integrity of micro-holes of SS304 obtained by micro-EDM. J Braz. Soc. Mech. Sci. Eng. 38, 2029–2037 (2016). https://doi.org/10.1007/s40430-016-0488-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0488-8

Keywords

Navigation