Skip to main content
Log in

Thermophysical aspects of stagnation point magnetonanofluid flow yields by an inclined stretching cylindrical surface: a non-Newtonian fluid model

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In various attempts, researchers considered Eyring–Powell fluid flow past a flat stretching surface supported with different physical effects, but as yet few explorations are proposed with accuracy regarding cylindrical stretching surface. In this work, we have considered magnetohydrodynamic Eyring–Powell nanofluid flow brought by an included stretching cylindrical surface under the region of stagnation point. To report thermophysical aspects, Joule heating, thermal radiations, mixed convection, temperature stratification, and heat generation effects are taken into account. The flow conducting differential equations are fairly converted into system of coupled non-linear ordinary differential equations by means of appropriate transformation. A numerical communication is made against these obtained coupled equations through shooting method supported with fifth-order Runge–Kutta scheme. It is found that fluid temperature shows an inciting nature towards Eckert number, thermophoresis parameter, Brownian motion parameter, thermal radiation parameter, and heat generation parameter, but it reflects opposite trends for Lewis number and thermal stratification parameter. Furthermore, the obtained results are validated by providing comparison with existing values which set a benchmark of quality of computational algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

\(\overset{\lower0.1em\hbox{$\smash{\scriptscriptstyle\frown}$}}{u} ,\,\,\overset{\lower0.1em\hbox{$\smash{\scriptscriptstyle\frown}$}}{v}\) :

Velocity components

\(\nu\) :

Kinematic viscosity

g :

Gravity

\(\beta ,\,c,\,M,\,\,\lambda\) :

Eyring–Powell fluid parameters

\(T_{w} (x)\) :

Prescribed surface temperature

\(T_{0}\) :

Reference temperature

\(L\) :

Reference length

\(\alpha\) :

Inclination of cylinder

\(\psi\) :

Stream function

\(\alpha_{1}\) :

Thermal stratification parameter

\(Ec\) :

Eckert number

\(F'(\eta )\) :

Velocity of fluid

\(k\) :

Thermal conductivity

\(V\) :

Velocity vector

\(\overset{\lower0.1em\hbox{$\smash{\scriptscriptstyle\frown}$}}{u}_{e}\) :

Free stream velocity

\(T\) :

Fluid temperature

\(R\) :

Radius of cylindrical surface

\(Gr\) :

Temperature Grashof number

\(b,c,d,e\) :

Positive constant

\(Re_{x}\) :

Local Reynolds number

\(Q_{0}\) :

Heat generation coefficient

\(\beta_{\text{T}}\) :

Thermal expansion coefficient

\(C_{\text{f}}\) :

Skin friction coefficient

\(D_{\text{B}}\) :

Brownian diffusion coefficient

\(C\) :

Fluid concentration

\(C_{0}\) :

Reference concentration

\(R_{\text{p}}\) :

Thermal radiation parameter

\(Nb\) :

Brownian motion parameter

\(Le\) :

Lewis number

\(R_{0}\) :

Rate of chemical reaction

\(q_{r}\) :

Roseland radiative heat flux

\(x,r\) :

Space variable

\(\rho\) :

Fluid density

\(\mu\) :

Dynamic viscosity

\(K\) :

Curvature parameter

\(T_{\infty } (x)\) :

Variable ambient temperature

\(U_{0}\) :

Reference velocity

\(F(\eta )\) :

Dimensionless variable

\(Pr\) :

Prandtl number

\(\eta\) :

Similarity variable

\(\gamma\) :

Magnetic field parameter

\(c_{\text{p}}\) :

Specific heat at constant pressure

\(A\) :

Velocities ratio parameter

\(N\) :

Ratio of concentration to thermal buoyancy forces

\(\tau_{w}\) :

Shear stress

\(U(x)\) :

Stretching velocity

\(\lambda_{\text{m}}\) :

Mixed convection parameter

\(Gr*\) :

Concentration Grashof number

\(Q\) :

Heat generation parameter

\(B_{0}\) :

Uniform magnetic field

\(Nu_{x}\) :

Local Nusselt number

\(\beta_{\text{c}}\) :

Concentration expansion coefficient

\(\alpha *\) :

Thermal diffusivity

\(D_{\text{T}}\) :

Thermophoretic diffusion coefficient

\(C_{w}\) :

Prescribed surface concentration

\(C_{\infty }\) :

Variable ambient concentration

\(Rc\) :

Chemical reaction parameter

\(Nt\) :

Thermophoresis parameter

\(\alpha_{2}\) :

Solutal stratification parameter

\(Sh\) :

Local Sherwood number

\(\tau\) :

Ratio of nanoparticles heat capacity to the base fluid heat capacity

\(\prime\) (prime):

Denotes differentiation w.r.t variable \(\eta\)

\(w\) :

Condition at cylindrical surface

\(\infty\) :

Condition away from the surface

References

  1. Chol SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ Fed 231:99–106

    Google Scholar 

  2. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79(14):2252–2254

    Article  Google Scholar 

  3. Maiga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N (2005) Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow 26(4):530–546

    Article  Google Scholar 

  4. Kang HU, Kim SH, Oh JM (2006) Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Exp Heat Transf 19(3):181–191

    Article  Google Scholar 

  5. Wang XQ, Mujumdar AS (2008) A review on nanofluids-part I: theoretical and numerical investigations. Braz J Chem Eng 25(4):613–630

    Article  Google Scholar 

  6. Khan WA, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53(11):2477–2483

    Article  MATH  Google Scholar 

  7. Hosseini M, Sheikholeslami Z, Ganji DD (2013) Non-Newtonian fluid flow in an axisymmetric channel with porous wall. Propuls Power Res 2(4):254–262

    Article  Google Scholar 

  8. Hatami M, Ganji DD (2014) Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods. Case Stud Therm Eng 2:14–22

    Article  Google Scholar 

  9. Ashorynejad HR, Javaherdeh K, Sheikholeslami M, Ganji DD (2014) Investigation of the heat transfer of a non-Newtonian fluid flow in an axisymmetric channel with porous wall using Parameterized Perturbation Method (PPM). J Frankl Inst 351(2):701–712

    Article  MathSciNet  MATH  Google Scholar 

  10. Hatami M, Hatami J, Ganji DD (2014) Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel. Comput Methods Progr Biomed 113(2):632–641

    Article  Google Scholar 

  11. Bahiraei M, Hangi M (2015) Flow and heat transfer characteristics of magnetic nanofluids: a review. J Magn Magn Mater 374:125–138

    Article  Google Scholar 

  12. Rahimi-Gorji M, Pourmehran O, Gorji-Bandpy M, Ganji DD (2015) An analytical investigation on unsteady motion of vertically falling spherical particles in non-Newtonian fluid by collocation method. Ain Shams Eng J 6(2):531–540

    Article  Google Scholar 

  13. Hayat T, Muhammad T, Alsaedi A, Alhuthali MS (2015) Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation. J Magn Magn Mater 385:222–229

    Article  Google Scholar 

  14. Bahiraei M (2015) Effect of particle migration on flow and heat transfer characteristics of magnetic nanoparticle suspensions. J Mol Liq 209:531–538

    Article  Google Scholar 

  15. Dogonchi AS, Divsalar K, Ganji DD (2016) Flow and heat transfer of MHD nanofluid between parallel plates in the presence of thermal radiation. Comput Methods Appl Mech Eng 310:58–76

    Article  MathSciNet  Google Scholar 

  16. Bahiraei M (2016) Particle migration in nanofluids: a critical review. Int J Therm Sci 109:90–113

    Article  Google Scholar 

  17. Hussanan A, Khan I, Hashim H, Mohamed MKA, Ishak N, Sarif NM, Salleh MZ (2016) Unsteady Mhd flow of some nanofluids past an accelerated vertical plate embedded in a porous medium. J Teknol 78(2):121–126

    Google Scholar 

  18. Sheikholeslami M, Rokni HB (2017) Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force. Comput Methods Appl Mech Eng 317:419–430

    Article  MathSciNet  Google Scholar 

  19. Bahiraei M, Naghibzadeh SM, Jamshidmofid M (2017) Efficacy of an eco-friendly nanofluid in a miniature heat exchanger regarding to arrangement of silver nanoparticles. Energy Convers Manag 144:224–234

    Article  Google Scholar 

  20. Bilal S, Rehman KU, Malik MY, Hussain A, Awais M (2017) Effect logs of double diffusion on MHD Prandtl nano fluid adjacent to stretching surface by way of numerical approach. Results Phys 7:470–479

    Article  Google Scholar 

  21. Bahiraei M, Khosravi R, Heshmatian S (2017) Assessment and optimization of hydrothermal characteristics for a non-Newtonian nanofluid flow within miniaturized concentric-tube heat exchanger considering designer’s viewpoint. Appl Therm Eng 123:266–276

    Article  Google Scholar 

  22. Ibrahim W, Makinde OD (2013) The effect of double stratification on boundary-layer flow and heat transfer of nanofluid over a vertical plate. Comput Fluids 86:433–441

    Article  MathSciNet  MATH  Google Scholar 

  23. Ishak A, Nazar R, Pop I (2008) Mixed convection boundary layer flow adjacent to a vertical surface embedded in a stable stratified medium. Int J Heat Mass Transf 51(13):3693–3695

    Article  MATH  Google Scholar 

  24. Srinivasacharya D, Upendar M (2013) Effect of double stratification on MHD free convection in a micropolar fluid. J Egypt Math Soc 21(3):370–378

    Article  MathSciNet  MATH  Google Scholar 

  25. Hayat T, Hussain T, Shehzad SA, Alsaedi A (2014) Thermal and concentration stratifications effects in radiative flow of Jeffrey fluid over a stretching sheet. PLoS One 9(10):e107858

    Article  Google Scholar 

  26. Mishra SR, Pattnaik PK, Dash GC (2015) Effect of heat source and double stratification on MHD free convection in a micropolar fluid. Alex Eng J 54(3):681–689

    Article  Google Scholar 

  27. Hussain T, Hussain S, Hayat T (2016) Impact of double stratification and magnetic field in mixed convective radiative flow of Maxwell nanofluid. J Mol Liq 220:870–878

    Article  Google Scholar 

  28. Babu MJ, Sandeep N (2017) UCM flow across a melting surface in the presence of double stratification and cross-diffusion effects. J Mol Liq 232:27–35

    Article  Google Scholar 

  29. Malik MY, Bilal S, Bibi M (2017) Numerical analysis for MHD thermal and solutal stratified stagnation point flow of Powell–Eyring fluid induced by cylindrical surface with dual convection and heat generation effects. Results Phys 7:482–492

    Article  Google Scholar 

  30. Powell RE, Eyring H (1944) Mechanism for relaxation theory of viscosity. Nature 154(55):427–428

    Article  Google Scholar 

  31. Yoon HK, Ghajar AJ (1987) A note on the Powell–Eyring fluid model. Int Commun Heat Mass Transf 14(4):381–390

    Article  Google Scholar 

  32. Patel M, Timol MG (2009) Numerical treatment of Powell–Eyring fluid flow using method of satisfaction of asymptotic boundary conditions (MSABC). Appl Numer Math 59(10):2584–2592

    Article  MathSciNet  MATH  Google Scholar 

  33. Javed T, Ali N, Abbas Z, Sajid M (2013) Flow of an Eyring–Powell non-Newtonian fluid over a stretching sheet. Chem Eng Commun 200(3):327–336

    Article  Google Scholar 

  34. Roşca AV, Pop I (2014) Flow and heat transfer of Powell-Eyring fluid over a shrinking surface in a parallel free stream. Int J Heat Mass Transf 71:321–327

    Article  Google Scholar 

  35. Malik MY, Hussain A, Nadeem S (2013) Boundary layer flow of an Eyring–Powell model fluid due to a stretching cylinder with variable viscosity. Sci Iran 20(2):313–321

    Google Scholar 

  36. Hayat T, Gull N, Farooq M, Ahmad B (2015) Thermal radiation effect in MHD flow of Powell—Eyring nanofluid induced by a stretching cylinder. J Aerosp Eng 29(1):04015011

    Article  Google Scholar 

  37. Rehman KU, Malik MY, Salahuddin T, Naseer M (2016) Dual stratified mixed convection flow of Eyring–Powell fluid over an inclined stretching cylinder with heat generation/absorption effect. AIP Adv 6(7):075112

    Article  Google Scholar 

  38. Rehman A, Achakzia S, Nadeem S, Iqbal S (2016) Stagnation point flow of Eyring Powell fluid in a vertical cylinder with heat transfer. J Power Technol 96(1):57

    Google Scholar 

  39. Rahimi J, Ganji DD, Khaki M, Hosseinzadeh K (2016) Solution of the boundary layer flow of an Eyring-Powell non-Newtonian fluid over a linear stretching sheet by collocation method. Alex Eng J. doi:10.1016/j.aej.2016.11.006

    Google Scholar 

  40. Fathizadeh M, Madani M, Khan Y, Faraz N, Yıldırım A, Tutkun S (2013) An effective modification of the homotopy perturbation method for mhd viscous flow over a stretching sheet. J King Saud Univ Sci 25(2):107–113

    Article  Google Scholar 

  41. Akbar NS, Ebaid A, Khan ZH (2015) Numerical analysis of magnetic field effects on Eyring–Powell fluid flow towards a stretching sheet. J Magn Magn Mater 382:355–358

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Ur Rehman.

Ethics declarations

Conflict of interest

In the present work, we have not used any material from published articles; therefore, we have no conflict of interest.

Additional information

Technical Editor: Cezar Negrao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, K.U., Khan, A.A., Malik, M.Y. et al. Thermophysical aspects of stagnation point magnetonanofluid flow yields by an inclined stretching cylindrical surface: a non-Newtonian fluid model. J Braz. Soc. Mech. Sci. Eng. 39, 3669–3682 (2017). https://doi.org/10.1007/s40430-017-0860-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0860-3

Keywords

Navigation