Skip to main content
Log in

Simple bidirectional linear ultrasonic motor driven by single-phase signal

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

A novel standing wave linear ultrasonic motor with a single source of sinusoidal wave is presented for exciting first-order longitudinal and second-order bending coupling working modes. First, on the basis of a kinematics analysis of the composite piezoelectric beam, the initial motor structure size is created, and the frequency difference of the two working modes of the motor with the initial sizes is 10,950.8 Hz. Second, the initial motor design is optimized according to the subproblem approximation algorithm to obtain the final motor size. The frequency difference in the optimized motor becomes 121.2 Hz. Third, transient analysis of the optimized motor is carried out, and the motion trajectory of the driving foot is an oblique ellipse. Switching the drive electrodes can realize the bidirectional movement of the motor. Finally, the motor prototype is fabricated, and its vibration characteristics and mechanical properties are tested. The maximum no-load motor speed at 96.6 kHz is 168.5 mm/s. The performance in the forward and backward directions is identical according to a test of no-load velocity versus voltage. With 150 Vpp voltage and 10 N preload, the motor’s maximum output thrust is approximately 0.9 N with a moving speed of 16.6 mm/s at 96.6 kHz. The overall motor mass is approximately 3.4 g. Thus, the thrust-to-weight ratio reaches 27.01.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Oh S, Takemura K (2014) Development of robot finger using ultrasonic motors driven by superimposed signal input. In: IEEE Ultrasonics Symposium, pp 2490–2493

  2. Qun Z, Cong L, Jian Z et al (2017) Synchronized motion control and precision positioning compensation of a 3-DOFs macro-micro parallel manipulator fully actuated by piezoelectric actuators. Smart Mater Struct 26(11):1–15

    Google Scholar 

  3. Uchino K (1998) Piezoelectric ultrasonic motors: overview. Smart Mater Struct 7(3):273

    Article  Google Scholar 

  4. Wallaschek J (1995) Piezoelectric ultrasonic motors. J Intell Mater Syst Struct 6(1):71–83

    Article  Google Scholar 

  5. Su H, Zervas M, Cole G A et al (2011) Real-time MRI-guided needle placement robot with integrated fiber optic force sensing. In: IEEE international conference on robotics and automation (ICRA), pp 1583–1588

  6. Shi Y, Zhao C (2012) Simple new ultrasonic piezoelectric actuator for precision linear positioning. J Electroceramics 28(4):233–239

    Article  MathSciNet  Google Scholar 

  7. Kurosawa MK, Kodaira O, Tsuchitoi Y et al (1998) Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators. IEEE Trans Ultrason Ferroelectr 45(5):1188–1195

    Article  Google Scholar 

  8. Guo M, Dong S, Ren B et al (2010) A double-mode piezoelectric single-crystal ultrasonic micro-actuator. IEEE Trans Ultrason Ferroelectr 57(11):2596–2600

    Article  Google Scholar 

  9. Park T, Kim B, Kim MH et al (2002) Characteristics of the first longitudinal-fourth bending mode linear ultrasonic motors. Jpn J Appl Phys 41(11S):7139–7143

    Article  Google Scholar 

  10. Yun CH, Ishii T, Nakamura K et al (2001) A high power ultrasonic linear motor using a longitudinal and bending hybrid bolt-clamped Langevin type transducer. Jpn J Appl Phys 40(5S):3773–3776

    Article  Google Scholar 

  11. He S, Chen W, Tao X et al (1998) Standing wave bi-directional linearly moving ultrasonic motor. IEEE Trans Ultrason Ferroelectr 45(5):1133–1139

    Article  Google Scholar 

  12. Friend JR, Satonobu J, Nakamura K et al (2003) A single-element tuning fork piezoelectric linear actuator. IEEE Trans Ultrason Ferroelectr 50(2):179–186

    Article  Google Scholar 

  13. Friend J, Gouda Y, Nakamura K et al (2006) A simple bidirectional linear microactuator for nanopositioning-the “Baltan” microactuator. IEEE Trans Ultrason Ferroelectr 53(6):1160–1168

    Article  Google Scholar 

  14. Flueckiger M, Fernandez L J, Perriard Y (2007) P5G-1 optimization of a single phase ultrasonic linear motor. In: Proceedings of the 2007 IEEE international ultrasonics symposium, pp 2327–2330

  15. Tamura H, Shibata K, Aoyagi M et al (2008) Single phase drive ultrasonic motor using LiNbO3 rectangular vibrator. Jpn J Appl Phys 47(5S):4015–4020

    Article  Google Scholar 

  16. He S, Chiarot PR, Park S (2011) A single vibration mode tubular piezoelectric ultrasonic motor. IEEE Trans Ultrason Ferroelectr 58(5):1049–1061

    Article  Google Scholar 

  17. Park S, He S (2012) Standing wave brass-PZT square tubular ultrasonic motor. Ultrasonics 52(7):880–889

    Article  Google Scholar 

  18. Chang LK, Tsai MC (2016) Design of single-phase driven screw-thread-type ultrasonic motor. Rev Sci Instrum 87(5):055002

    Article  Google Scholar 

  19. Li C, Lu CY, Ma YX (2017) A piezoelectric motor driven by a single-phase signal. J VibroEng 19(4):2645–2653

    Article  Google Scholar 

  20. Vyshnevsky O, Kovalev S, Wischnewskiy W (2005) A novel, single-mode piezoceramic plate actuator for ultrasonic linear motors. IEEE Trans Ultrason Ferroelectr 52(11):2047–2053

    Article  Google Scholar 

  21. Hsiao SW, Tsai MC (2010) Single-phase drive linear ultrasonic motor with perpendicular electrode vibrator. Jpn J Appl Phys 49(2R):024201

    Article  Google Scholar 

  22. Yokoyama K, Tamura H, Masuda K et al (2013) Single-phase drive ultrasonic linear motor using a linked twin square plate vibrator. Jpn J Appl Phys 52(7S):07HE03

    Article  Google Scholar 

  23. Chen Z, Li X, Ci P et al (2015) A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes. Rev Sci Instrum 86(3):035002

    Article  Google Scholar 

  24. Ma Y, Choi M, Uchino K (2016) Single-phase driven ultrasonic motor using two orthogonal bending modes of sandwiching piezo-ceramic plates. Rev Sci Instrum 87(11):115004

    Article  Google Scholar 

  25. Pan Q, Miao E, Wu B et al (2017) Bio-inspired piezoelectric linear motor driven by a single-phase harmonic wave with an asymmetric stator. Rev Sci Instrum 88(7):075002

    Article  Google Scholar 

  26. Dabbagh V, Sarhan AA, Akbari J et al (2017) Design and experimental evaluation of a precise and compact tubular ultrasonic motor driven by a single-phase source. Precis Eng 48(2017):172–180

    Article  Google Scholar 

  27. Liu Y, Shi S, Li C et al (2016) A novel standing wave linear piezoelectric actuator using the longitudinal-bending coupling mode. Sensors Actuators A Phys 251(2016):119–125

    Article  Google Scholar 

  28. Liu Y, Shi S, Chen Li C et al (2016) Development of a bi-directional standing wave linear piezoelectric actuator with four driving feet. Ultrasonics 84(2018):81–86

    Google Scholar 

  29. Zhao CS (2011) Ultrasonic motors, technologies and applications. Springer, Berlin

    Book  Google Scholar 

  30. Inman DJ, Cudney HH (1998) Structural and machine design using piezoceramic materials: a guide for structural design engineers. University of Michigan, Ann Arbor

    Google Scholar 

  31. Shi Y, Zhao C (2011) A new standing-wave-type linear ultrasonic motor based on in-plane modes. Ultrasonics 51(4):397–404

    Article  Google Scholar 

  32. Zhang L, He B, Yuan X (1994) Iterative lanczos-reduced method for sensitivity analysis in finite element model updating. J Vib Eng Technol 7(3):230–234

    Google Scholar 

  33. Dong Z, Yang M (2017) Optimal design of a double-vibrator ultrasonic motor using combination method of finite element method, sensitivity analysis and adaptive genetic algorithm. Sensors Actuators A Phys 266(2016):1–8

    Article  Google Scholar 

  34. Allemang R J, Brown D L (1982) A correlation coefficient for modal vector analysis. In: Proceedings of the 1st international modal analysis conference vol 1, pp 110–116

  35. Germano C (1971) Flexure mode piezoelectric transducers. Trans Audio Electroacoust 19(1):6–12

    Article  Google Scholar 

  36. Sharp SL, Paine JSN, Blotter JD (2010) Design of a linear ultrasonic piezoelectric motor. J Intell Mater Syst Struct 21(21):961–973

    Article  Google Scholar 

  37. Djojodihardjo H, Jafari M, Wiriadidjaja S et al (2015) Active Vibration Suppression of an elastic piezoelectric sensor and actuator fitted cantilevered beam configurations as a generic smart composite structure. Compos Struct 132(2015):848–863

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51577112 and No. 51605271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingqing Fan.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Technical Editor: Wallace Moreira Bessa, D.Sc..

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, P., Li, C. Simple bidirectional linear ultrasonic motor driven by single-phase signal. J Braz. Soc. Mech. Sci. Eng. 41, 539 (2019). https://doi.org/10.1007/s40430-019-2020-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-2020-4

Keywords

Navigation