Skip to main content
Log in

Abrasive waterjet machining of fiber-reinforced composites: a state-of-the-art review

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Fiber-reinforced composites have established as a high-performance composite of modern advanced structures in various sectors such as automotive, aerospace, and marine industries. Non-conventional machining processes are preferred for the ease of manufacturing operations, which incorporates the machining of high strength and anisotropic material. Non-conventional manufacturing processes produce complicated shaped profiles and better surface characteristics. Abrasive water jet (AWJ) machining is an emerging technology that offers an excellent alternative among the various advanced machining processes due to its process capabilities and excellent machining quality. AWJ machining has fascinated immense attention in the fields of fiber-reinforced composite materials to produce intricate industrial components and attracted the researchers and production industries. It has become well-known in all key areas of researches. Over the past 30 years, lots of research work has been carried out to describe the machining performances among the studied process parameters. This paper reviews the research progresses and integrated functions of AWJ machining in terms of mechanism and machining performances, which includes aspects such as mathematical modeling and optimization. AWJ machining procedure and performance capability are reviewed and depicted in detail. Also, a comprehensive conclusion of this review, along with future perspective, is explored subsequently. The current review work will help future researchers for the proper selection of different FRP material composite compositions and AWJ machining parameters to achieve better performances. The collection of this review literature will also support the production operations in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduce with permission [6, 7]

Fig. 2

Reproduce with permission [84]

Fig. 3
Fig. 4

Reproduce with permission [31]

Fig. 5

Reproduce with permission [85]

Fig. 6
Fig. 7

Reproduce with permission [47]

Fig. 8

Reproduce with permission [48]

Fig. 9
Fig. 10
Fig. 11

Reproduce with permission [85]

Fig. 12

Reproduce with permission [95]

Fig. 13

Reproduce with permission [98]

Fig. 14

Reproduce with permission [100]

Fig. 15

Reproduce with permission [101]

Similar content being viewed by others

Abbreviations

FRP:

Fiber-reinforced polymer

AWJ:

Abrasive water jet

MRR:

Material removal rate

SR:

Surface roughness

DOE:

Design of experiment

UD:

Unidirectional

SOD:

Standoff distance

AMFR:

Abrasive mass flow rate

CFRP:

Carbon fiber-reinforced polymer

WJM:

Water jet machining

MWCNT:

Multi-walled carbon nanotubes

GFRP:

Glass fiber-reinforced polymer

AJM:

Abrasive jet machining

PMC:

Polymer matrix composite

ANOVA:

Analysis of variance

TKW:

Top kerf width

BKW:

Bottom kerf width

RSM:

Response surface methodology

GRA:

Grey relational analysis

References

  1. Jones RM (2009) Mechanics of composite materials, 2nd edn. Taylor & Francis Ltd, London

    Google Scholar 

  2. Nassar MMA, Arunachalam R, Alzebdeh KI (2017) Machinability of natural fiber reinforced composites: a review. Int J Adv Manuf Technol 88:2985–3004. https://doi.org/10.1007/s0017-016-9010-9

    Article  Google Scholar 

  3. Rahman M, Ramakrishna S, Prakash JRS, Tan DCG (1999) Machinability study of carbon fiber reinforced composite. J Mater Process Technol 89–90:292–297. https://doi.org/10.1016/S0924-0136(99)00040-0

    Article  Google Scholar 

  4. Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design, 3rd edn. CRC Press, Boca Rotan

    Book  Google Scholar 

  5. Sheikh-Ahmad JY (2009) Machining of polymer composites. Springer, Boston

    Book  Google Scholar 

  6. Ho M, Wang H, Lee JH, Ho C, Lau K, Leng J, Hui D (2012) Critical factors on manufacturing processes of natural fiber composites. Compos Part B 43:3549–3562. https://doi.org/10.1016/j.compositesb.2011.10.001

    Article  Google Scholar 

  7. Al-Oqla FM, Alothman OY, Jawaid M, Sapuan SM, Es-Saheb MH (2006) Processing and properties of date palm fibers and its composites. Biomass Bioenergy. https://doi.org/10.1016/j.biombioe.2005.11.019

    Article  Google Scholar 

  8. Komanduri R (1997) Machining of fiber-reinforced composites. Mach Sci Technol 1:113–152. https://doi.org/10.1080/10940349708945641

    Article  Google Scholar 

  9. Zimniewska M, Myalski J, Koziol M, Mankowski J, Bogacz E (2012) Natural fiber textile structures suitable for composite materials. J Nat Fibers 9:229–239. https://doi.org/10.1080/15440478.2012.737176

    Article  Google Scholar 

  10. John MJ, Varughese KT, Thomas S (2008) Green composites from natural fibers and natural rubber: effect of fiber ratio on mechanical and swelling characteristics. J Nat Fibers 5:47–60. https://doi.org/10.1080/15440470801901480

    Article  Google Scholar 

  11. Mohanty AK, Misra M, Hinrichsen G (2001) Biofibers. Biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276:1–24

    Google Scholar 

  12. Zahn H, Hles JF, Nlenhaus M (1980) Wool as a biological composite structure. Ind Eng Chem Res 19:496–501

    Article  Google Scholar 

  13. Simpson WS, Crawshaw GH (2002) Wool: science and technology. CRC Press, Cambridge

    Book  Google Scholar 

  14. Feughelman M (1997) Mechanical properties and structure of alpha-keratin fibers: wool, human hair and related fibers. University of New South Wales Press, Kensington

    Google Scholar 

  15. Gaurav A, Singh KK (2016) Fatigue behavior of FRP composites and CNT-Embedded FRP composites: a review. Polym Compos 39:1785–1808. https://doi.org/10.1002/pc.24177

    Article  Google Scholar 

  16. Teti R (2002) Machining of composite materials. CIRP Ann Manuf Technol 51:611–634. https://doi.org/10.1016/S0007-8506(07)61703-X

    Article  Google Scholar 

  17. Ansari MTA, Singh KK, Azam MS (2018) Fatigue damage analysis of fiber-reinforced polymer composites—a review. J Reinf Plast Compos 37:636–654. https://doi.org/10.1177/0731684418754713

    Article  Google Scholar 

  18. Che D, Saxena I, Han P, Guo P, Ehmann KF (2014) Machining of carbon fiber reinforced plastics/polymers: a literature review. J Manuf Sci Eng 136:1–22. https://doi.org/10.1115/1.4026526

    Article  Google Scholar 

  19. Momber AW, Kovacevic R (1998) Principles of abrasive water jet machining, 1st edn. Springer, London

    Book  Google Scholar 

  20. Rajmohan T, Palanikumar K (2014) Application of the central composite design in optimization of machining parameters in drilling hybrid metal matrix composites. Measurement 46:1470–1481. https://doi.org/10.1016/j.measurement.2012.11.034

    Article  Google Scholar 

  21. Kawai M, Suda H (2004) Effects of non-negative mean stress on the off-axis fatigue behavior of unidirectional carbon/epoxy composites at room temperature. J Compos Mater 38:833–854. https://doi.org/10.1177/0021998304042477

    Article  Google Scholar 

  22. Quach THY, Benelfellah A, Batiot B, Halm D, Rogaume T, Luche J, Bertheau D (2016) Determination of the tensile residual properties of a wound carbon/epoxy composite first exposed to fire. J Compos Mater 51:17–29. https://doi.org/10.1177/0021998316637419

    Article  Google Scholar 

  23. Tagliaferri V, Ilio AD, Visconti IC (1985) Laser cutting of fiber-reinforced polyesters. Composites 16:317–325. https://doi.org/10.1016/0010-4361(85)90284-8

    Article  Google Scholar 

  24. Jagadish Bhowmik S, Ray A (2015) Prediction of surface roughness quality of green abrasive water jet machining: a soft computing approach. J Intell Manuf 2015:1–15. https://doi.org/10.1007/s10845-015-1169-7

    Article  Google Scholar 

  25. Trivedi P, Dhanawade A, Kumar S (2016) An experimental investigation on cutting performance of abrasive water jet machining of austenite steel (AISI 316L). Adv Mater Process Technol 1:263–274. https://doi.org/10.1080/2374068x.2015.1128176

    Article  Google Scholar 

  26. Ho-Cheng H (1990) A failure analysis of water jet drilling in composite laminates. Int J Mach Tools Manuf 30:423–429. https://doi.org/10.1016/0890-6955(90)90186-m

    Article  Google Scholar 

  27. EI-Hofy H (2005) Advanced manufacturing processes, 1st edn. McGraw-Hill, New York

    Google Scholar 

  28. Khan AA, Haque MM (2007) Performance of different abrasive materials during abrasive water jet machining of glass. J Mater Process Technol 191:404–407. https://doi.org/10.1016/j.jmatprotec.2007.03.071

    Article  Google Scholar 

  29. Ho-cheng H, Tsai H-Y (2013) Advanced analysis of nontraditional machining. Springer, New York

    Book  Google Scholar 

  30. Dhanawade A, Kumar S (2018) Study on carbon epoxy composite surfaces machined by abrasive water jet machining. J Compos Mater 12:1–16. https://doi.org/10.1177/0021998318807278

    Article  Google Scholar 

  31. Dhanawade A, Kumar S (2017) Experimental study of delamination and kerf geometry of carbon epoxy composite machined by abrasive water jet. J Compos Mater 51:3373–3390. https://doi.org/10.1177/0021998316688950

    Article  Google Scholar 

  32. Selvam R, Karunamoorthy L, Arunkumar N (2017) Investigation on performance of abrasive water jet in machining hybrid composites. Mater Manuf Process 32:700–706. https://doi.org/10.1080/10426914.2016.1198039

    Article  Google Scholar 

  33. Pang KL, Nguyen T, Fan JM, Wang J (2012) Modelling of the micro-channeling process on glasses using an abrasive slurry jet. Int J Mach Tools Manuf 53:118–126. https://doi.org/10.1016/j.ijmachtools.2011.10.005

    Article  Google Scholar 

  34. Escobar-Palafox GA, Gault R, Ridgway K (2012) Characterisation of abrasive waterjet process for pocket milling in Inconel. Proc CIRP 718:404–408. https://doi.org/10.1016/j.procir.2012.04.072

    Article  Google Scholar 

  35. Thakur RK, Singh KK, Ramkumar J (2020) Experimental investigation of abrasive waterjet hole cutting on hybrid carbon/glass composite. Mater Today Proc 21:1551–1558. https://doi.org/10.1016/j.matpr.2019.11.085

    Article  Google Scholar 

  36. Abrate S, Walton D (1992) Machining of composite materials. Part II: non-traditional methods. Compos Manuf 3:85–94. https://doi.org/10.1016/0956-7143(92)90120-J

    Article  Google Scholar 

  37. Karakurt I, Aydin G, Aydiner K (2012) A study on the prediction of kerf angle in abrasive waterjet machining of rocks. Proc Inst Mech Eng Part B J Eng Manuf 226:1489–1499. https://doi.org/10.1177/0954405412454395

    Article  Google Scholar 

  38. Benardos PG, Vosniakos GC (2003) Predicting surface roughness in machining: a review. Int J Mach Tools Manuf 43:833–844. https://doi.org/10.1016/S0890-6955(03)00059-2

    Article  Google Scholar 

  39. Shanmugam DK, Wang J, Liu H (2008) Minimisation of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique. Int J Mach Tools Manuf 48:1527–1534. https://doi.org/10.1016/j.ijmachtools.2008.07.001

    Article  Google Scholar 

  40. Kumar D, Singh KK (2015) An approach towards damage free machining of CFRP and GFRP composite material: a review. Adv Compos Mater 24:37–41. https://doi.org/10.1080/09243046.2014.928966

    Article  Google Scholar 

  41. Mayuet PF, Girot F, Lamikiz A, Fernández-Vidal SR, Salguero J, Marcos M (2015) SOM/SEM based characterization of internal delaminations of CFRP samples machined by AWJM. Procedia Eng 132:693–700. https://doi.org/10.1016/j.proeng.2015.12.549

    Article  Google Scholar 

  42. Montgomery DC (2009) Design and analysis of experiments, 7th edn. Wiley, Hoboken

    Google Scholar 

  43. Cavazzuti M (2013) Design of experiments. In Optimization methods: from theory to design. Springer, Berlin Heidelberg, pp 13–42. https://doi.org/10.1007/978-3-642-31187-1_2

  44. Davis R, John P (2018) Application of Taguchi-based design of experiments for industrial chemical processes. Valter Silva, IntechOpen, pp 137–155. https://doi.org/10.5772/intechopen.69501

  45. Telford JK (2007) A brief introduction to design of experiments. Johns Hopkins apl Tech Dig 27:224–232

    Google Scholar 

  46. Babu GD, Babu KS, Gowd BUM (2013) Effect of machining parameters on milled natural fiber-reinforced plastic composites. J Adv Mech Eng 1:1–12. https://doi.org/10.7726/jame.2013.1001

    Article  Google Scholar 

  47. Karataş AM, Gökkaya H (2018) A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Def Technol 14:318–326. https://doi.org/10.1016/j.dt.2018.02.001

    Article  Google Scholar 

  48. Kumaran ST, Ko TJ, Uthayakumar M, Islam MM (2017) Prediction of surface roughness in abrasive water jet machining of CFRP composites using regression analysis. J Alloys Compd 724:1037–1045. https://doi.org/10.1016/j.jallcom.2017.07.108

    Article  Google Scholar 

  49. Azmir MA, Ahsan AK (2008) Investigation on glass/epoxy composite surfaces machined by abrasive water jet machining. J Mater Process Technol 198:122–128. https://doi.org/10.1016/j.jmatprotec.2007.07.014

    Article  Google Scholar 

  50. Kalirasu S, Rajini N, Jappes JTW, Uthayakumar M, Rajesh S (2015) Mechanical and machining performance of glass and coconut sheath fiber polyester composites using AWJM. J Reinf Plast Compos 34:564–580. https://doi.org/10.1177/0731684415574870

    Article  Google Scholar 

  51. Dhakal HN, Ismail SO, Ojo SO, Paggi M, Smith JR (2018) Abrasive water jet drilling of advanced sustainable bio-fibre-reinforced polymer/hybrid composites: a comprehensive analysis of machining-induced damage responses. Int J Adv Manuf Technol 99:2833–2847. https://doi.org/10.1007/s00170-018-2670-x

    Article  Google Scholar 

  52. Unde PD, Gayakwad MD, Patil NG, Pawade RS, Thakur DG, Brahmankar PK (2015) Experimental investigations into abrasive waterjet machining of carbon fiber reinforced plastic. J Compos 2015:1–9. https://doi.org/10.1155/2015/971596

    Article  Google Scholar 

  53. Ramulu M, Arola D (1994) The influence of abrasive waterjet cutting conditions on the surface quality of graphite/epoxy laminates. Int J Mach Tools Manuf 34:295–313. https://doi.org/10.1016/0890-6955(94)90001-9

    Article  Google Scholar 

  54. Ming IWM, Azmi AI, Chaun LC, Mansor AF (2017) Experimental study and empirical analyses of abrasive waterjet machining for hybrid carbon/glass fiber-reinforced composites for improved surface quality. Int J Adv Manuf Technol 95:3809–3822. https://doi.org/10.1007/s00170-017-1465-9

    Article  Google Scholar 

  55. Arola D, Ramulu MA (1996) Study of kerf characteristics in abrasive waterjet machining of graphite/epoxy composite. J Eng Mater Technol 118:256–265. https://doi.org/10.1115/1.2804897

    Article  Google Scholar 

  56. Ramulu M, Arola D (1993) Water jet and abrasive water jet cutting of unidirectional graphite/epoxy composite. Composites 24:299–308. https://doi.org/10.1016/0010-4361(93)90040-F

    Article  Google Scholar 

  57. Gao H, Ji B, Jäger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci 100:5597–5600. https://doi.org/10.1073/pnas.0631609100

    Article  Google Scholar 

  58. Hussian M, Oku Y, Nakahira A, Niihara K (1996) Effects of wet ball-milling on particle dispersion and mechanical properties of particulate epoxy composites. Mater Lett 26:177–184. https://doi.org/10.1016/0167-577X(95)00223-5

    Article  Google Scholar 

  59. Chisholm N, Mahtuz H, Rangari VK, Ashfaq A, Jeelani S (2005) Fabrication and mechanical characterization of carbon/Sic-epoxy nanocomposite. Compos Struct 67:115–124. https://doi.org/10.1016/j.compstruct.2004.01.010

    Article  Google Scholar 

  60. Evora VMF, Shukla A (2003) Fabrication, characterization and dynamic behaviour of polyester/TiO2 nanocomposites. Mater Sci Eng, A 361:358–366. https://doi.org/10.1016/S0921-5093(03)00536-7

    Article  Google Scholar 

  61. Iwahori Y, Ishiwata S, Sumizawa T, Ishikawa T (2005) Mechanical properties improvements in two-phase and three-phase composites using carbon nanofiber dispersed resin. Compos Part A 36:1430–1439. https://doi.org/10.1016/j.compositesa.2004.11.017

    Article  Google Scholar 

  62. Jani SP, Kumar AS, Khan MA, Kumar MA (2015) Machinablity of hybrid natural fiber composite with and without filler as reinforcement. Mater Manuf Process 31:1393–1399. https://doi.org/10.1080/10426914.2015.1117633

    Article  Google Scholar 

  63. Ramesha N, Siddaramaiah Akhtar S (2016) Abrasive water jet machining and mechanical behavior of banyan tree saw dust powder loaded polypropylene green composites. Polym Compos 37:1754–1764. https://doi.org/10.1002/pc.23348

    Article  Google Scholar 

  64. Ceritbinmez F, Yapici A (2020) An investigation on cutting of the MWCNTs-doped composite plates by AWJ. Arab J Sci Eng. https://doi.org/10.1007/s13369-020-04363-3

    Article  Google Scholar 

  65. Syazwani H, Mebrahitom G, Azmir A (2016) A review on nozzle wear in abrasive water jet machining application. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899x/114/1/012020

    Article  Google Scholar 

  66. Zhang YX, Wang LF, Yao F, Wang H, Men XS, Ye BB (2011) Experimental study on the influence of nozzle diameter on abrasive jet cutting performance. Adv Mater Res 337:466–469. https://doi.org/10.4028/www.scientific.net/AMR.337.466

    Article  Google Scholar 

  67. Madhu S, Balasubramanian M (2016) Influence of nozzle design and process parameters on surface roughness of CFRP machined by abrasive jet. Mater Manuf Process 32:1011–1018. https://doi.org/10.1080/10426914.2016.1257132

    Article  Google Scholar 

  68. Madhu S, Balasubramanian M (2018) Effect of swirling abrasives induced by a novel threaded nozzle in machining of CFRP composites. Int J Adv Manuf Technol 95:4175–4189. https://doi.org/10.1007/s00170-017-1488-2

    Article  Google Scholar 

  69. Balasubramanian M, Madhu S (2019) Evaluation of delamination damage in carbon epoxy composites under swirling abrasives made by modified internal threaded nozzle. J Compos Mater 53:819–833. https://doi.org/10.1177/0021998318791340

    Article  Google Scholar 

  70. Azmir MA, Ahsan AK (2009) A study of abrasive water jet machining process on glass/epoxy composite laminate. J Mater Process Technol 209:6168–6173. https://doi.org/10.1016/j.jmatprotec.2009.08.011

    Article  Google Scholar 

  71. Doreswamy D, Shivamurthy B, Anjaiah D, Sharma NY (2015) An investigation of abrasive water jet machining on graphite/glass/epoxy composite. Int J Manuf Eng 2015:1–11. https://doi.org/10.1155/2015/627218

    Article  Google Scholar 

  72. Wang J (1999) Abrasive waterjet machining of polymer matrix composites—cutting performance, erosive process and predictive models. Int J Adv Manuf Technol 15:757–768. https://doi.org/10.1007/s001700050129

    Article  Google Scholar 

  73. Wang J, Kuriyagawa T, Huang CZ (2013) An experimental study to enhance the cutting performance in abrasive waterjet machining. Mach Sci Technol 7:191–207. https://doi.org/10.1081/mst-120022777

    Article  Google Scholar 

  74. Lemma E, Chen L, Siores E, Wang J (2002) Study of cutting fiber-reinforced composites by using abrasive water-jet with cutting head oscillation. Compos Struct 57:297–303. https://doi.org/10.1016/S0263-8223(02)00097-1

    Article  Google Scholar 

  75. Armagan M, Arici AA (2016) Cutting performance of glass-vinyl ester composite by abrasive water jet. Mater Manuf Process 32:1715–1722. https://doi.org/10.1080/10426914.2016.1269919

    Article  Google Scholar 

  76. Ramesha K, Santhosh N, Kiran K, Manjunath N, Naresh H (2019) Effect of the process parameters on machining of GFRP composites for different conditions of abrasive water suspension jet machining. Arab J Sci Eng 44:7933–7943. https://doi.org/10.1007/s13369-019-03973-w

    Article  Google Scholar 

  77. Azmir MA, Ahsan AK, Rahmah A (2009) Effect of abrasive water jet machining parameters on aramid fiber reinforced plastics composite. Int J Mater Form 2:37–44. https://doi.org/10.1007/s12289-008-0388-2

    Article  Google Scholar 

  78. Wang J, Guo DM (2002) A predictive depth of penetration model for abrasive waterjet cutting of polymer matrix composites. J Mater Process Technol 121:390–394. https://doi.org/10.1016/S0924-0136(01)01246-8

    Article  Google Scholar 

  79. Kumaran ST, Ko TJ, Kurniawan R, Li C, Uthayakumar M (2017) ANFIS modeling of surface roughness in abrasive waterjet machining of carbon fiber reinforced plastics. J Mech Sci Technol 31:3949–3954. https://doi.org/10.1007/s12206-017-0741-9

    Article  Google Scholar 

  80. Jagadeesh B, Babu PD, Mohamed MN, Marimuthu P (2017) Experimental investigation and optimization of abrasive water jet cutting parameters for the improvement of cut quality in carbon fiber reinforced plastic laminates. J Ind Text 48:178–200. https://doi.org/10.1177/1528083717725911

    Article  Google Scholar 

  81. Groppetti R, Armanni A, Cattaneo A, Franceschini G (1992) Contribution to the study of the delamination of carbon fibre reinforced plastic (CFRP) laminated composites during piercing and cutting by hydro jet machining (HJM) and hydro abrasive jet machining (HAJM). In: Computer aided design in composite material technology III. Springer, Dordrecht, pp 189–209. https://doi.org/10.1007/978-94-011-2874-2_13

  82. Shanmugam DK, Nguyen T, Wang J (2008) A study of delamination on graphite/epoxy composites in abrasive waterjet machining. Compos Part A Appl Sci Manuf 39:923–929. https://doi.org/10.1016/j.compositesa.2008.04.001

    Article  Google Scholar 

  83. Xiao S, Wang P, Gao H, Soulat D (2019) A study of abrasive waterjet multi-pass cutting on kerf quality of carbon fiber-reinforced plastics. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-3177-1

    Article  Google Scholar 

  84. Shanmugam DK, Masood SH (2009) An investigation on kerf characteristics in abrasive waterjet cutting of layered composites. J Mater Process Technol 209:3887–3893. https://doi.org/10.1016/j.jmatprotec.2008.09.001

    Article  Google Scholar 

  85. Iw MM, Azmi A, Lee C, Mansor A (2018) Kerf taper and delamination damage minimization of FRP hybrid composites under abrasive water-jet machining. Int J Adv Manuf Technol 94:1727–1744. https://doi.org/10.1007/s00170-016-9669-y

    Article  Google Scholar 

  86. Jagadish Bhowmik S, Ray A (2016) Prediction and optimization of process parameters of green composites in AWJM process using response surface methodology. Int J Adv Manuf Technol 87:1359–1370. https://doi.org/10.1007/s00170-015-8281-x

    Article  Google Scholar 

  87. Prabu VA, Kumaran ST, Uthayakumar M (2016) Performance evaluation of abrasive water jet machining on banana fiber reinforced polyester composite. J Nat Fibers 14:450–457. https://doi.org/10.1080/15440478.2016.1212768

    Article  Google Scholar 

  88. Kalirasu S, Rajini N, Jappes JTW, Karuppasamy K (2017) AWJM Performance of jute/polyester composite using MOORA and analytical models. Mater Manuf Process 32:1730–1739. https://doi.org/10.1080/10426914.2017.1279314

    Article  Google Scholar 

  89. Kalusuraman G, Kumaran ST, Siva I, Kumar SA (2020) Cutting performance of luffa cylindrica fiber-reinforced composite by abrasive water jet. J Test Eval 48:12. https://doi.org/10.1520/JTE20180330

    Article  Google Scholar 

  90. Vigneshwaran S, Uthayakumar M, Arumugaprabu V (2019) Prediction and analysis of abrasive water jet machining performance on hybrid composite. J Test Eval. https://doi.org/10.1520/jte20180593

    Article  Google Scholar 

  91. Akkurt A (2009) The effect of material type and plate thickness on drilling time of abrasive water jet drilling process. Mater Des 30:810–815. https://doi.org/10.1016/j.matdes.2008.05.049

    Article  Google Scholar 

  92. Zhang S, Wu Y, Chen D (2011) Hole-drilling using abrasive water jet in titanium. Int J Mach Mach Mater 9:47–65. https://doi.org/10.1504/ijmmm.2011.038160

    Article  Google Scholar 

  93. Phapale K, Singh R, Patil S, Singh RKP (2016) Delamination characterization and comparative assessment of delamination control techniques in abrasive water jet drilling of CFRP. Procedia Manuf 5:521–535. https://doi.org/10.1016/j.promfg.2016.08.043

    Article  Google Scholar 

  94. Karatas MA, Gokkaya H, Nalbant M (2019) Optimization of machining parameters for abrasive water jet drilling of carbon fiber-reinforced polymer composite material using Taguchi method. Aircr Eng Aerosp Technol 92:128–138. https://doi.org/10.1108/aeat-11-2018-0282

    Article  Google Scholar 

  95. Li M, Huang M, Yang X, Li S, Wei K (2018) Experimental study on hole quality and its impact on tensile behavior following pure and abrasive waterjet cutting of plain woven CFRP laminates. Int J Adv Manuf Technol 99:2481–2490. https://doi.org/10.1007/s00170-018-2589-2

    Article  Google Scholar 

  96. Ibraheem HMA, Iqbal A, Hashemipour M (2015) Numerical optimization of hole making in GFRP composite using abrasive water jet machining process. J Chin Inst Eng Trans 38:66–76. https://doi.org/10.1080/02533839.2014.953240

    Article  Google Scholar 

  97. Siddiqui TU, Shukla M (2011) Abrasive waterjet hole trepanning of thick Kevlar-epoxy composites for ballistic applications—experimental investigations and analysis using design of experiments methodology. Int J Mach Mach Mater 10:172–176. https://doi.org/10.1504/IJMMM.2011.042189

    Article  Google Scholar 

  98. Thongkaew K, Wang J, Li W (2018) An investigation of the hole machining processes on woven carbon-fiber reinforced polymers (CFRPs) using abrasive waterjets. Mach Sci Technol 23:19–38. https://doi.org/10.1080/10910344.2018.1449217

    Article  Google Scholar 

  99. Srinivasu DS, Axinte DA (2014) Surface integrity analysis of plain waterjet milled advanced engineering composite materials. Proc CIRP 13:371–376. https://doi.org/10.1016/j.procir.2014.04.063

    Article  Google Scholar 

  100. Hejjaji A, Zitoune R, Crouzeix L, Roux SL, Collombet F (2017) Surface and machining induced damage characterization of abrasive water jet milled carbon/epoxy composite specimens and their impact on tensile behavior. Wear 376–377:1356–1364. https://doi.org/10.1016/j.wear.2017.02.024

    Article  Google Scholar 

  101. Li W, Zhu H, Wang J, Huang C (2016) Radial-mode abrasive waterjet turning of short carbon–fiber-reinforced plastics. Mach Sci Technol 20:231–248. https://doi.org/10.1080/10910344.2016.1165836

    Article  Google Scholar 

  102. Hutyrová Z, Ščučka J, Hloch S, Hlaváček P, Zeleňák M (2015) Turning of wood plastic composites by water jet and abrasive water jet. Int J Adv Manuf Technol 84:1615–1623. https://doi.org/10.1007/s00170-015-7831-6

    Article  Google Scholar 

  103. Hocheng H, Tsai HY, Shiue JJ, Wang B (1997) Feasibility study of abrasive-waterjet milling of fiber-reinforced plastics. J Manuf Sci Eng 119:133–142. https://doi.org/10.1115/1.2831088

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Thakur.

Additional information

Technical Editor: Lincoln Cardoso Brandao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, R.K., Singh, K.K. Abrasive waterjet machining of fiber-reinforced composites: a state-of-the-art review. J Braz. Soc. Mech. Sci. Eng. 42, 381 (2020). https://doi.org/10.1007/s40430-020-02463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02463-7

Keywords

Navigation