Skip to main content
Log in

Investigation on nonlinear dynamics and active control of boring bar chatter

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This article deals with identification of nonlinear dynamics and active control of boring bar chatter. A control system with unidirectional actuation is proposed, which consists of an accelerometer sensor that monitors the cutting tool vibrations as well as an electrodynamic shaker that exerts a controllable force to a boring bar in the radial direction. The forward path model for actuator–boring bar assembly is identified using the fundamental concepts of system identification. A novel parameter-varying transfer function is suggested to model the nonlinear dynamics of forward path, which originally stems from the cutting tool structure. The proposed model describes the variations of system’s output response with respect to frequency and amplitude of input excitation. The identified dynamic model is then utilized for model-based controller tuning. The chatter control system utilizes a Direct Velocity Feedback (DVF) controller, and the optimal control gain is computed based upon the disturbance rejection criterion. It is confirmed that the performance of optimally tuned DVF controller does not depend on variations of forward path dynamics. The practical performance of optimal controller is experimentally verified by conducting impact tests as well as cutting tests on Aluminum alloy 6063-T6. According to the obtained results, the dynamic stiffness of active cutting tool is significantly improved by 20-fold. Moreover, chatter is perfectly attenuated around the fundamental mode of boring bar. The DVF controller efficiently attenuates the vibrations by 70 dB. Finally, the viability of using an active cutting tool with embedded electromagnetic damper is studied for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Sortino M, Totis G, Prosperi F (2012) Development of a practical model for selection of stable tooling system configurations in internal turning. Int J Mach Tools Manuf 61:58–70. https://doi.org/10.1016/j.ijmachtools.2012.05.010

    Article  Google Scholar 

  2. Tlusty J (1981) Criteria for static and dynamic stiffness of structures. In Report of the Mach Tool Task Force 3 Mach Tool Mech. Lawrence Livermore Lab.

  3. Lee DG, Hwang HY, Kim JK (2003) Design and manufacture of a carbon fiber epoxy rotating boring bar. Compos Struct 60(1):115–124. https://doi.org/10.1016/S0263-8223(02)00287-8

    Article  Google Scholar 

  4. Rivin EI, Kang HL (1992) Enhancement of dynamic stability of cantilever tooling structures. Int J Mach Tools Manuf 32(4):539–561. https://doi.org/10.1016/0890-6955(92)90044-H

    Article  Google Scholar 

  5. Houck L, Schmitz TL, Smith KS (2011) A tuned holder for increased boring bar dynamic stiffness. J Manuf Process 13(1):24–29. https://doi.org/10.1016/j.jmapro.2010.09.002

    Article  Google Scholar 

  6. Akesson H, Smirnova T, Hakansson L (2009) Analysis of dynamic properties of boring bars concerning different clamping conditions. Mech Syst Signal Process 23(8):2629–2647. https://doi.org/10.1016/j.ymssp.2009.05.012

    Article  Google Scholar 

  7. New RW, Au YHJ (1980) Chatter-proof overhang boring bars - stability criteria and design procedure for a new type of damped boring bar. J Mech Des 102(3):611–618. https://doi.org/10.1115/1.3254793

    Article  Google Scholar 

  8. Yoshimura M (1986) Vibration-proof design of boring bar with multidegree-of-freedom dampers. J Mech, Trans Automation 108(4):442–447. https://doi.org/10.1115/1.3258752

    Article  Google Scholar 

  9. Yang Y, Munoa J, Altintas Y (2010) Optimization of multiple tuned mass dampers to suppress machine tool chatter. Int J Mach Tools Manuf 50(9):834–842. https://doi.org/10.1016/j.ijmachtools.2010.04.011

    Article  Google Scholar 

  10. Diniz AE, da Silva WTA, Suyama DI, Pederiva R, Albuquerque MV (2019) Evaluating the use of a new type of impact damper for internal turning tool bar in deep holes. Int J Adv Manuf Technol 101:1375–1390. https://doi.org/10.1007/s00170-018-3039-x

    Article  Google Scholar 

  11. Chockalingam S, Natarajan U, Cyril AG (2017) Damping investigation in boring bar using hybrid copper-zinc particles. J Vib Control 23(13):2128–2134. https://doi.org/10.1177/1077546315610946

    Article  Google Scholar 

  12. Wang M, Fei R (2001) On-line chatter detection and control in boring based on an electrorheological fluid. Mechatronics 11(7):779–792. https://doi.org/10.1016/S0957-4158(00)00044-1

    Article  Google Scholar 

  13. Mei D, Kong T, Shih AJ, Chen Z (2009) Magnetorheological fluid-controlled boring bar for chatter suppression. J Mater Process Technol 209(4):1861–1870. https://doi.org/10.1016/j.jmatprotec.2008.04.037

    Article  Google Scholar 

  14. Matsubara A, Maeda M, Yamaji I (2014) Vibration suppression of boring bar by piezoelectric actuators and LR circuit. J Manuf Technol 63(1):373–376. https://doi.org/10.1016/j.cirp.2014.03.132

    Article  Google Scholar 

  15. Fallah M, Moetakef-Imani B (2017) Analytical prediction of stability lobes for passively damped boring bars. J Mech 33(5):641–654. https://doi.org/10.1017/jmech.2017.22

    Article  Google Scholar 

  16. Munoa J, Beudaert X, Dombovari Z, Altintas Y, Budak E, Breche C, Stepan G (2016) Chatter suppression techniques in metal cutting. J Manuf Technol 65:785–808. https://doi.org/10.1016/j.cirp.2016.06.004

    Article  Google Scholar 

  17. Venter GS, Silva LMP, Carneiro MB, da Silva MM (2017) Passive and active strategies using embedded piezoelectric layers to improve the stability limit in turning/boring operations. Int J Adv Manuf Technol 89:2789–2801. https://doi.org/10.1007/s00170-016-9620-2

    Article  Google Scholar 

  18. Glaser DJ, Nachtigal CL (1979) Development of a hydraulic chambered, actively controlled boring bar. J Eng Ind 101(3):362–368. https://doi.org/10.1115/1.3439519

    Article  Google Scholar 

  19. Brecher C, Schulz A, Week M (2005) Electrohydraulic active damping system. J Manuf Technol 54(1):389–392. https://doi.org/10.1016/S0007-8506(07)60129-2

    Article  Google Scholar 

  20. Katsuki A, Onikura H, Sajima T, Mohri A, Moriyama T, Hamano Y, Murakami H (2011) Development of a practical high-performance laser-guided deep-hole boring tool: improvement in guiding strategy. J Precis Eng 35(2):221–227. https://doi.org/10.1016/j.precisioneng.2010.12.003

    Article  Google Scholar 

  21. Chen F, Lu X, Altintas Y (2014) A novel magnetic actuator design for active damping of machining tools. Int J Mach Tools Manuf 85:58–69. https://doi.org/10.1016/j.ijmachtools.2014.05.004

    Article  Google Scholar 

  22. Min BK, O’Neal G, Koren Y, Pasek Z (2002) A smart boring tool for process control. Mechatronics 12(9-10):1097–1114. https://doi.org/10.1016/S0957-4158(02)00020-X

    Article  Google Scholar 

  23. Andren L, Hakansson L, Claesson I (2003) Active control of machine tool vibrations in external turning operations. Proc Inst Mech Eng B J Eng Manuf 217(6):869–872. https://doi.org/10.1243/09544050360673251

    Article  Google Scholar 

  24. Pratt JR (1997) Vibration control for chatter suppression with application to boring bars. Dissertation, Virginia Polytechnic Institute and State University. http://hdl.handle.net/10919/29344

  25. Vashisht RK, Peng Q (2020) Feasibility analysis of active chatter control for stationary and revolving bar boring operations based on magnitude of control forces using fractional order PDλ controller. Int J Mach Tools Manuf 106:3957–3974. https://doi.org/10.1007/s00170-019-04881-x

    Article  Google Scholar 

  26. Browning DR, Golioto I, Thompson NB (1997) Active chatter control system for long-overhang boring bars. Proc SPIE Smart Struct Mater Conf 3044:270–280. https://doi.org/10.1117/12.274671

    Article  Google Scholar 

  27. Fallah M, Moetakef-Imani B (2019) Design, analysis, and implementation of a new adaptive chatter control system in internal turning. Int J Adv Manuf Technol 104:1637–1659. https://doi.org/10.1007/s00170-019-03808-w

    Article  Google Scholar 

  28. Chiu WM, Lam FW, Gao D (2002) An overhung servo boring bar system for on-line correction of machining errors. J Mater Process Technol 122(2-3):286–292. https://doi.org/10.1016/S0924-0136(01)01183-9

    Article  Google Scholar 

  29. Hanson RD, Tsao TC (1998) Reducing cutting force induced bore cylindricity errors by learning control and variable depth of cut machining. J Manuf Sci Eng 120(3):547–554. https://doi.org/10.1115/1.2830158

    Article  Google Scholar 

  30. Radecki PP, Farinholt KM, Park G, Bement MT (2010) Vibration suppression in cutting tools using a collocated piezoelectric sensor/actuator with an adaptive control algorithm. J Vib Acoust 132(5):051002. https://doi.org/10.1115/1.4001498

    Article  Google Scholar 

  31. Akesson H, Smirnova T, Claesson I, Hakansson L (2007) On the development of a simple and robust active control system for boring bar vibration in industry. Int J Acoust Vib 12(4):139–152. https://doi.org/10.20855/ijav.2007.12.4216

    Article  Google Scholar 

  32. Wana S, Li X, Su W, Yuan J, Hong J (2020) Active chatter suppression for milling process with sliding mode control and electromagnetic actuator. Mech Syst Signal Process 136:106528. https://doi.org/10.1016/j.ymssp.2019.106528

    Article  Google Scholar 

  33. Ganguli A, Deraemaeker A, Preumont A (2007) Regenerative chatter reduction by active damping control. J Sound Vib 300(3-5):847–862. https://doi.org/10.1016/j.jsv.2006.09.005

    Article  Google Scholar 

  34. Mancisidor I, Munoa J, Bárcena R (2014) Optimal control laws for chatter suppression using inertial actuator in milling processes. 11th International Conference on High Speed Mach (HSM2014)

  35. Abele E, Haydn M, Grosch T (2016) Adaptronic approach for modular long projecting boring tools. J Manuf Technol 65(1):393–396. https://doi.org/10.1016/j.cirp.2016.04.104

    Article  Google Scholar 

  36. Schmitz TL, Smith KS (2009) Machining dynamics: frequency response to improved productivity. Springer, New York. https://doi.org/10.1007/978-0-387-09645-2

  37. Eynian M, Altintas Y (2009) Chatter stability of general turning operations with process damping. J Manuf Sci Eng 131(4):041005. https://doi.org/10.1115/1.3159047

    Article  Google Scholar 

  38. Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, New York. https://doi.org/10.1017/CBO9780511843723

  39. Brandt A (2011) Noise and vibration analysis: signal analysis and experimental procedures. John Wiley and Sons, Chichester. https://doi.org/10.1002/9780470978160

  40. Xue D, Chen YQ, Atherton DP (2007) Linear feedback control: analysis and design with MATLAB. SIAM, Philadelphia. https://doi.org/10.1137/1.9780898718621

    Book  MATH  Google Scholar 

  41. Diniz AE, Micaroni R (2002) Cutting conditions for finish turning process aiming: the use of dry cutting. Int J Mach Tools Manuf 42(8):899–904. https://doi.org/10.1016/S0890-6955(02)00028-7

    Article  Google Scholar 

  42. Gadelmawla ES, Koura MM, Maksoud TMA, Elewa IM, Soliman HH (2002) Roughness parameters. J Mater Process Technol 123(1):133–145. https://doi.org/10.1016/S0924-0136(02)00060-2

    Article  Google Scholar 

  43. Wang M, Zan T, Yang Y, Fei R (2010) Design and implementation of nonlinear TMD for chatter suppression: an application in turning processes. Int J Mach Tools Manuf 50(5):474–479. https://doi.org/10.1016/j.ijmachtools.2010.01.004

    Article  Google Scholar 

  44. Munoa J, Mancisidor I, Loix N, Uriarte LG, Barcena R, Zatarain M (2013) Chatter suppression in ram type travelling column milling machines using a biaxial inertial actuator. J Manuf Technol 62(1):407–410. https://doi.org/10.1016/j.cirp.2013.03.143

    Article  Google Scholar 

  45. Yang Y, Dai W, Liu Q (2015) Design and implementation of two-degree-of-freedom tuned mass damper in milling vibration mitigation. J Sound Vib 335:78–88. https://doi.org/10.1016/j.jsv.2014.09.032

    Article  Google Scholar 

  46. Rana KPS (2011) Fuzzy control of an electrodynamic shaker for automotive and aerospace vibration testing. Expert Syst Appl 38(9):11335–11346. https://doi.org/10.1016/j.eswa.2011.02.184

    Article  Google Scholar 

Download references

Funding

This study is supported by Ferdowsi University of Mashhad (Research and Technology Grant ID: 3/40663).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Fallah.

Additional information

Tehchnical Editor: Adriano Fagali de Souza.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallah, M., Moetakef-Imani, B. Investigation on nonlinear dynamics and active control of boring bar chatter. J Braz. Soc. Mech. Sci. Eng. 43, 116 (2021). https://doi.org/10.1007/s40430-021-02808-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-02808-w

Keywords

Navigation