Skip to main content
Log in

Comparative analysis of ultrasonic drilling process using static and rotary tools

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Ultrasonic drilling (USD) is widely used for drilling of glass. A comparative study of USD for 2.0 mm diameter hole in 3.0 mm thick soda lime glass has been performed using static (USD-ST) and rotary tool (USD-RT) of mild steel. To make the process more cost effective and productive, statistical models of material removal rate (MRR), hole circularity at entry and exit (HCentry, HCexit) and hole taper (Ht) have been developed using Box–Behnken approach of response surface methodology. The effect of abrasive size, frequency, ultrasonic power and tool rotational speed have been investigated and it was observed that abrasive size is the most significant factor to control MRR during USD-ST. In USD-RT, MRR, HCentry, HCexit and Ht are significantly affected by frequency. The combination of low frequency and small grain size produces high MRR in USD-RT. Increase of frequency from 22 to 24 kHz increases HCentry by 4.3% in USD-ST, whereas for rotating tool the increase of frequency from 22 to 25 kHz decreases the value by 2%. HCentry increases with the rise of frequency at constant ultrasonic power, USD-ST provides 7.14% more circular hole at entry compared to USD-RT for a combination of frequency and grit size. In multi-objective optimization of USD-ST, a desirability value of 0.8589 was obtained at ultrasonic power of 90%, frequency 23.47 kHz and abrasive grit no 60, whereas for USD-RT the desirability value of 0.8499 were correspondingly obtained at 78.48%, 25.5 kHz, 770.20 rpm and 60.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abdallah A, Hossam M, El-Hoffy H (2018) Experimental investigation of surface and geometrical characteristics of rotary ultrasonic drilling of soda glass. Int J Mach Sci Technol 23(3):85–416. https://doi.org/10.1080/10910344.2018.1486422

    Article  Google Scholar 

  2. Farid AA, Sharif S, Idris MH (2011) Chip morphology study in high speed drilling of Al–Si alloy. Int J Adv Manuf Technol 57:555–564. https://doi.org/10.1007/s00170-011-3325-3

    Article  Google Scholar 

  3. Neugebauer R, Stoll A (2004) Ultrasonic application in drilling. J Mater Process Technol 149:633–639. https://doi.org/10.1016/j.jmatprotec.2003.10.062

    Article  Google Scholar 

  4. Haashir A, Debnath T, Patowari PK (2020) A comparative assessment of micro drilling in boron carbide using ultrasonic machining. Mater Manuf Process. https://doi.org/10.1080/10426914.2019.1697447

    Article  Google Scholar 

  5. Debnath K, Singh I, Dwivedi A (2015) Rotary mode ultrasonic drilling of glass fiber-reinforced epoxy laminates. J Compos Mater 49(8):949–963. https://doi.org/10.1177/0021998314527857

    Article  Google Scholar 

  6. Majeed AA, Vijayaraghvan L, Malhotra SK, Krishna Murthy R (2008) A.E. Monitoring of ultrasonic machining of Al2O3/LaPO4 composites. J Mater Process Technol 207:321–329. https://doi.org/10.1016/j.jmatprotec.2008.06.039

    Article  Google Scholar 

  7. Azarhoushang B, Akbari J (2007) Ultrasonic-assisted drilling of Inconel 738-LC. Int J Mach Tools Manuf 47:1027–1033. https://doi.org/10.1016/j.ijmachtools.2006.10.007

    Article  Google Scholar 

  8. Guzzo PL, Raslan AA, De Mello JDB (2003) Ultrasonic abrasion of quartz crystals. Wear 255:67–77. https://doi.org/10.1016/S0043-1648(03)00094-2

    Article  Google Scholar 

  9. Hocheng H, Tai NH, Liu CS (2000) Assessment of ultrasonic drilling of C/SiC composite material. Compos: Part A 31:133–142. https://doi.org/10.1016/S1359-835X(99)00065-2

    Article  Google Scholar 

  10. Deng J, Lee T (2002) Ultrasonic machining of alumina based ceramic composites. J Eur Ceram Soc 22(8):1235–1241. https://doi.org/10.1016/S0955-2219(01)00437-X

    Article  Google Scholar 

  11. Komaraiah M, Reddy PN (1993) A study on the influence of workpiece properties in ultrasonic machining. Int J Mach Tools Manuf 33(3):495–505. https://doi.org/10.1016/0890-6955(93)90055-Y

    Article  Google Scholar 

  12. Komariah M, Reddy PN (1993) Relative performance of tool materials in ultrasonic machining. Wear 161(1–2):1–10. https://doi.org/10.1016/0043-1648(93)90446-S

    Article  Google Scholar 

  13. Komaraiah M, Manan MA, Reddy PN, Victor S (1988) Investigation of surface roughness and accuracy in ultrasonic machining. Precis Eng 10(2):59–65. https://doi.org/10.1016/0141-6359(88)90001-3

    Article  Google Scholar 

  14. Adithan M, Krishnamurthy R (1978) Structural alterations in the workpiece by ultrasonic drilling. Wear 46:327–334. https://doi.org/10.1016/0043-1648(78)90037-6

    Article  Google Scholar 

  15. Adithan M (1974) Tool wear studies in ultrasonic drilling. Wear 29:81–93. https://doi.org/10.1016/0043-1648(74)90136-7

    Article  Google Scholar 

  16. Dam H, Quist P, Schreiber M (1995) Productivity, surface quality and tolerances in ultrasonic machining of ceramics. J Mater Process Technol 51(1–4):358–368. https://doi.org/10.1016/0924-0136(94)01587-Q

    Article  Google Scholar 

  17. Hocheng H, Kuo KL, Lin JT (1999) Machinability of zirconia ceramics in ultrasonic drilling. Mater Manuf Process 14(5):713–724. https://doi.org/10.1080/10426919908914864

    Article  Google Scholar 

  18. Abdelkawy A, Hossam M, El-Hofy H (2019) Experimental investigation of the cutting forces and edge chipping in ultrasonic-assisted drilling of soda glass. Int J Adv Manuf Technol 100:1433–1449. https://doi.org/10.1007/s00170-018-2771-6

    Article  Google Scholar 

  19. Kuriakosea S, Patowaria PK, Bhatt J (2017) Machinability study of Zr–Cu–Ti metallic glass by micro hole drilling using micro-USM. J Mater Process Technol 240:42–51. https://doi.org/10.1016/j.jmatprotec.2016.08.026

    Article  Google Scholar 

  20. Kanwal JS, Ahuja IS, Kapoor J (2017) Optimization of process parameters for surface roughness in ultrasonic machining of polycarbonate bullet proof glass and acrylic heat resistant glass by Taguchi and grey relational analysis approach. Adv Eng Forum 38:21–44. https://doi.org/10.4028/www.scientific.net/AEF.23.21

    Article  Google Scholar 

  21. Singh R, Khamba JS (2007) Taguchi technique for modeling material removal rate in ultrasonic machining of titanium. Mater Sci Eng A 460–461:365–369. https://doi.org/10.1016/j.msea.2007.01.093

    Article  Google Scholar 

  22. Jadoun RS, Kumar P, Mishra BK, Mehta RCS (2007) Optimization of process parameters for ultrasonic drilling of advanced engineering ceramics using the Taguchi approach. Eng Optim 38(7):771–787. https://doi.org/10.1080/03052150600733962

    Article  Google Scholar 

  23. Goswami D, Chakraborty S (2015) Parametric optimization of ultrasonic machining process using gravitational search and fireworks algorithms. Ain Shams Eng J 6(1):315–331. https://doi.org/10.1016/j.asej.2014.10.009

    Article  Google Scholar 

  24. Dvivedi A, Kumar P (2007) Surface quality evaluation in ultrasonic drilling through the Taguchi technique. Int J Adv Manuf Technol 34:131–140. https://doi.org/10.1007/s00170-006-0586-3

    Article  Google Scholar 

  25. Teimouri R, Baseri H, Moharami R (2015) Multi-responses optimization of ultrasonic machining process. J Intell Manuf 26(4):745–753. https://doi.org/10.1007/s10845-013-0831-1

    Article  Google Scholar 

  26. Rao RV, Kalyankar VD (2013) Parameter optimization of modern machining processes using teaching-learning-based optimization algorithm. Eng Appl Artif Intell 26(1):524–531

    Article  Google Scholar 

  27. Lalchhuanvela H, Doloi B, Bhattacharyya B (2012) Enabling and understanding ultrasonic machining of engineering ceramics using parametric analysis. Mater Manuf Process 27(4):443–448

    Article  Google Scholar 

  28. Das S, Doloi B, Bhattacharyya B (2013) Optimization of ultrasonic machining of zirconia bio-ceramics using genetic algorithm. Int J Manuf Technol Manag 27(4/5/6):186–197

    Article  Google Scholar 

  29. Chakravorty R, Gauri SK, Chakraborty S (2013) Optimization of multiple responses of ultrasonic machining (USM) process: a comparative study. Int J Indust Eng Comput 4(2):165–172

    Google Scholar 

  30. Satoa T, Yeob SH, Zarepourb H, Loose abrasive machining. Handb Manuf Eng Technol. https://doi.org/10.1007/978-1-4471-4976-7_10-1

  31. Montgomery DC (1997) Design and analysis of experiments. Wiley, Singapore

    MATH  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the support of Prof. J. Ramkumar, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, India for providing the facility of Digital Microscope in Micromachining Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Mishra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Lincoln Cardoso Brandao, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Kumar, R., Kumar, A. et al. Comparative analysis of ultrasonic drilling process using static and rotary tools. J Braz. Soc. Mech. Sci. Eng. 43, 132 (2021). https://doi.org/10.1007/s40430-021-02838-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-02838-4

Keywords

Navigation