Skip to main content
Log in

Chromium toxicity induces oxidative stress in turnip

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Effect of chromium (both CrIII and CrVI) were studied on the oxidative damages and the induction of antioxidant defence in turnip. For this purpose turnip (Brassica rapa L.) plants were grown in refined sand under three different sources of chromium, i.e., chromium sulphate (CrIII), potassium chromate (CrVI) and potassium dichromate (CrVI) supplied at 250 µM concentrations for 4, 24 and 168 h (7 days) after 50 days of growth in normal nutrition. The extent of oxidative damage was most in dichromate as it caused a maximum increase in lipid peroxidation and H2O2 concentration in leaves of turnip plants. The growth and biomass of plants decreased, while the levels of chloroplastic pigment and iron increased in plants supplied CrVI (both potassium chromate and potassium dichromate). Exposure of plants to Cr led to increase in Cr concentration, more in the roots than in shoots. Excess supply of Cr (chromium sulphate, potassium chromate and potassium dichromate), though inhibited peroxidase activity (at 4 and 168 h exposure), stimulated catalase, ascorbate peroxidase and superoxide dismutase activities. Localization of different isoforms of APX and SOD on native gels revealed activation of certain isoform in the Cr-treated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and assays applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.

    Article  CAS  PubMed  Google Scholar 

  • Brennan, T., & Frankel, C. (1977). Involvement of hydrogen peroxide in regulation of senescence in pear. Plant Physiology, 59, 411–416.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chatterjee, J., & Chatterjee, C. (2000). Phytotoxicity of cobalt, chromium and copper in cauliflower. Environmental Pollution, 109, 69–74.

    Article  CAS  PubMed  Google Scholar 

  • Choudhury, S., & Panda, S. K. (2005). Toxic effects, oxidative stress and ultrastructural changes in moss Toxithelium nepalense (Schwaegr) Broth. Under chromium and lead phytotoxicity. Water, Air, and Soil pollution, 167, 73–90.

    Article  CAS  Google Scholar 

  • Dixit, V., Pandey, V., & Shyam, R. (2002). Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L cv. Azad) root mitochondria. Plant, Cell and Environment, 25, 687–693.

    Article  CAS  Google Scholar 

  • Dube, B. K., Tewari, K., Chatterjee, J., & Chatterjee, C. (2003). Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere, 164, 793–801.

    Google Scholar 

  • Dube, B. K., Sinha, P., Gopal, R., & Chatterjee, C. (2004). Chromium phytotoxicity alters metabolism in radish. Journal of Vegetable Crop Production, 10, 61–71.

    Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts, I. kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 180–198.

    Google Scholar 

  • Hewitt, E. J. (1966). Sand and water culture methods used in the study of plant nutrition (2nd ed.). London: Technical communication No. 22, Common Wealth Agricultural Bureau.

    Google Scholar 

  • Kappus, H. (1985). Lipid peroxidation: Mechanisms, analysis, enzymology and biological relevance. In H. Sies (Ed.), Oxidative stress (pp. 273–310). London: Academic Press.

    Chapter  Google Scholar 

  • Katz, S. A., & Salem, H. (1994). The biological and environmental chemistry of chromium. New York: VCH Publishers.

    Google Scholar 

  • Kotas, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107, 263–283.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382.

    Article  CAS  Google Scholar 

  • Liu, C., Du, W., Cai, H., Jia, Z., & Dong, H. (2014). Trivalent chromium pretreatment alleviates the toxicity of oxidative damage in wheat plants exposed to hexavalent chromium. Acta Physiologiae Plantarum, 36, 787–794.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin-phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  PubMed  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants. London: Academic Press.

    Google Scholar 

  • Mittler, R., & Zilinskas, B. A. (1993). Detection of ascorbate peroxidase activity in native gels by inhibition of ascorbate-dependent reduction of nitroblue tetrazolium. Analytical Biochemistry, 212, 540–546.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  • Nieboer, E., & Richardson, D. H. S. (1980). The replacement of nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environmental Pollution, B1, 3–26.

    Google Scholar 

  • Oliveira, H. (2012). Chromium as an environmental pollutant: Insights on induced plant toxicity. Journal of Botany, 2012, 8.

    Article  Google Scholar 

  • Paiva, L. B., de Oliveira, J. G., Azevedo, R. A., Ribeiro, D. R., daSilva, M. G., & Vitoria, A. P. (2009). Ecophysiological responses of water hyacinth exposed to CrIII and CrVI. Environmental and Experimental Botany, 65, 403–409.

    Article  CAS  Google Scholar 

  • Panda, S. K. (2007). Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. Journal of Plant Physiology, 164, 1419–1428.

    Article  CAS  PubMed  Google Scholar 

  • Panda, S. K., & Choudhury, S. (2005). Chromium stress in plants. Brazilian Journal of Plant Physiology, 17, 95–102.

    CAS  Google Scholar 

  • Panda, S. K., & Khan, M. H. (2003). Antioxidant efficiency in rice (Oryza sativa L.) leaves under heavy metal toxicity. Journal of Plant Biology, 30, 23–29.

    Google Scholar 

  • Panda, S. K., & Upadhyay, R. K. (2008). Biochemical changes and oxidative damage in Azolla pinnata L. under chromium phytotoxicity stress. Indian Journal of Plant Physiology, 13, 243–250.

    CAS  Google Scholar 

  • Panda, S. K., Choudhury, I., & Khan, M. H. (2003). Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Biologia Plantarum, 46, 289–294.

    Article  CAS  Google Scholar 

  • Pandey, N., & Sharma, C. P. (2003). Chromium interference in iron nutrition and water relations of cabbage. Environmetal and Experimental Botany, 49, 195–200.

    Article  CAS  Google Scholar 

  • Pandey, V., Dixit, V., & Shyam, R. (2009). Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. Protoplasma, 236, 85–95.

    Article  CAS  PubMed  Google Scholar 

  • Shanker, A. K., & Pathmanabhan, G. (2004). Speciation dependant antioxidative response in roots and leaves of Sorghum (Sorghum bicolor (L) Moench cv CO 27) under Cr(III) and Cr(VI) stress. Plant and Soil, 265, 141–151.

    Article  CAS  Google Scholar 

  • Sharma, D. C., & Sharma, C. P. (1996). Chromium uptake and toxicity effects on metabolic activities in wheat, Triticum aestivum L. cv. UP 2003. Indian Journal of Experimental Biology, 34, 689–691.

    CAS  PubMed  Google Scholar 

  • Tewari, R. K., Kumar, P., & Sharma, P. N. (2010). Morphology and oxidative physiology of boron-deficient mulberry plants. Tree Physiology, 30, 68–77.

    Article  CAS  PubMed  Google Scholar 

  • Welch, R. M., Allaway, W. H., House, W. A., & Kubota, J. (1991). Geographic distribution of trace element problems. In J. J. Mortvedt, F. R. Cox, L. M. Schuman, & R. M. Welch (Eds.), Micronutrient in Agriculture (pp. 31–37). Wisconsin: Soil Science Society of America.

    Google Scholar 

  • Zayed, A., Lytle, C. M., Qian, J. H., & Terry, N. (1998). Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta, 206, 293–299.

    Article  CAS  Google Scholar 

  • Zeid, I. M. (2001). Responces of Phaseolus vulgaris to chromium and cobalt treatments. Biologia Plantarum, 44, 111–115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joba Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, J., Kumar, P., Sharma, P.N. et al. Chromium toxicity induces oxidative stress in turnip. Ind J Plant Physiol. 20, 220–226 (2015). https://doi.org/10.1007/s40502-015-0163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-015-0163-6

Keywords

Navigation