Skip to main content
Log in

Role of starch hydrolytic enzymes and phosphatases in relation to under water seedling establishment in rice

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The activities of starch hydrolyzing enzymes and phosphatases were studied in seedlings of three Indica rice (Oryza sativa L.) cultivars, namely Panikekoa & T 1471 that showed good capacity for seedling establishment under submergence (tolerant) and IR 42 which had poor under water seedling establishment capacity (susceptible). Under submergence the total amylolytic activities were significantly higher in susceptible cultivars compared to the tolerant cultivars. Likely, the activities of α-amylase, debranching enzymes and α-glucosidase were also higher in susceptible cultivar IR 42. The activities of starch phosphorylase were comparatively higher in tolerant cultivars than susceptible cultivars. Susceptible cultivars maintained higher activities of both acid and alkaline phosphatase as well as phytase activities. Tolerant cultivars with higher seed biomass and low activity of hydrolytic enzymes might sustain the supply of food materials for longer period and hence, survived and established themselves under water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Beck, E., & Zeigler, P. (1989). Biosynthesis and degradation of starch in higher plants. Annual Review Plant Physiology Plant Molecular Biology, 40, 95–117.

    Article  CAS  Google Scholar 

  • Das, K. K., Sarkar, R. K., & Ismail, A. M. (2005). Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Science, 168, 131–136.

    Article  CAS  Google Scholar 

  • Fukao, T., & Bailey-Serres, J. (2008). Ethylene-a key regulator of submergence responses in rice. Plant Science. doi:10.1016/j.plantsci.2007.12.002.

    Google Scholar 

  • Fukao, T., Xu, K., Ronald, P. C., & Bailey-Serres, J. (2006). A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell, 18, 2021–2034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guglielminetti, L., Perata, P., & Alpi, A. (1995). Effect of anoxia on carbohydrate metabolism in rice seedlings. Plant Physiology, 108, 735–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, S. Y., Thomas, B. R., & Rodriguez, R. L. (1999). Differential expression of rice alpha-amylase genes during seedling development under anoxia. Plant Molecular Biology, 40, 911–920.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, M. B., & Ram, P. C. (2003). Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Annals of Botany, 91, 227–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewus, F. A., Everard, J. D., & Young, K. A. (1990). Inositol metabolism: precursor role and breakdown. In D. J. Morré, W. F. Boss, & F. A. Loewus (Eds.), Inositol metabolism in plants (pp. 21–45). New York: Willey-Liss.

    Google Scholar 

  • Manangkil, O. E., Vu, H. T. T., Yoshida, S., Mori, N., & Nakamura, C. (2008). A simple, rapid and reliable bioassay for evaluating seedling vigor under submergence in indica and japonica rice (Oryza sativa L.). Euphytica. doi:10.1007/s10681-008-9645-1).

    Google Scholar 

  • Mukherji, S., Dey, B., Paul, A. K., & Sircar, S. M. (1971). Changes in phosphorus fractions and phytase activity or rice seeds during germination. Physiologia Plantarum, 25, 95–97.

    Article  Google Scholar 

  • Mustroph, A., & Albrecht, G. (2003). Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiologia Plantarum, 117, 508–520.

    Article  CAS  PubMed  Google Scholar 

  • Mustroph, A., Boamfa, E. I., Laarhoven, L. J. J., Harren, F. J. M., Pors, Y., & Grimm, B. (2006). Organ specific analysis of the anaerobic primary metabolism in rice and wheat seedlings II: Light exposure reduces needs for fermentation and extends survival during anaerobiosis. Planta, 225, 139–152.

    Article  CAS  PubMed  Google Scholar 

  • Panda, D., Sharma, S. G., & Sarkar, R. K. (2007). Chlorophyll fluorescence transient analysis and its association with submergence tolerance in rice (Oryza sativa). Indian Journal of Agricultural Science, 77, 344–348.

    Google Scholar 

  • Panda, D., Sharma, S. G., & Sarkar, R. K. (2008). Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.). Aquatic Botany, 88, 127–133.

    Article  CAS  Google Scholar 

  • Paul, A. K., Mukherji, S., & Sircar, S. M. (1970). Metabolic changes in rice seeds during storage. Indian Journal of Agricultural Science, 40, 1031–1036.

    Google Scholar 

  • Perata, P., Pozueta-Romero, J., Akazawa, T., & Yamaguchi, J. (1992). Effect of anoxia on starch breakdown in rice and wheat seeds. Planta, 188, 611–618.

    Article  CAS  PubMed  Google Scholar 

  • Plaxton, W. C. (1996). The organization and regulation of plant glycolysis. Annual Review Plant Physiology Plant Molecular Biology, 47, 185–214.

    Article  CAS  Google Scholar 

  • Raboy, V. (1997). Accumulation and storage of phosphate and minerals. In B. A. Larkins & I. K. Vasil (Eds.), Cellular and molecular biology of plant seed development (pp. 441–477). Dordrecht: Kluwer academic Publishers.

    Chapter  Google Scholar 

  • Sadasivam, S., & Manickum, A. (1997). Biochemical methods (pp. 121–124). New Delhi: New Age International (P) Ltd. Publisher.

    Google Scholar 

  • Saika, H., Okamoto, M., Miyoshi, K., Fujimoto, M., et al. (2007). Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 80-hydroxylase in rice. Plant Cell Physiology, 48, 287–298.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, R. K., Banerjee, A., & Mukherji, S. (1982). Effects of toxic concentrations of natrium fluoride on growth and enzyme activities of rice (Oryza sativa L.) and jute (Corchorus olitorius L.) seedlings. Biologia Plantarum, 24, 34–38.

    Article  CAS  Google Scholar 

  • Sarkar, R. K., Bera, S. K., & De, R. N. (1999). Rice cultivars (Oryza sativa) cultivars suitable for anaerobicseeding. Indian Jornal Agricultural Science, 69, 473–476.

    Google Scholar 

  • Sarkar, R. K., & Das, S. (2003). Yield of rainfed lowland rice with medium water depth under anaerobic direct seeding and transplanting. Tropical Science, 43, 192–198.

    Article  Google Scholar 

  • Sarkar, R. K., Reddy, J. N., Sharma, S. G., & Ismail, A. M. (2006). Physiological basis of submergence tolerance in rice and implications for crop improvement. Current Science, 91, 899–906.

    CAS  Google Scholar 

  • Sauter, M. (2000). Rice in deep water: “How to take heed against a sea of troubles”. Naturwissenschaften, 87, 289–303.

    Article  CAS  PubMed  Google Scholar 

  • Thimmaiah, S. R. (1999). Standard methods of biochemical analysis (pp. 236–238). New Delhi: Kalyani Publishers.

    Google Scholar 

  • Vorobev, N. V., & Aleshin, E. P. (1985). Tolerance of rice seeds to oxygen deficiency and the cause of their destruction during germination in flooded soil. Fiziologiya Restenii, 32, 341–346.

    CAS  Google Scholar 

  • Xu, K., Xu, X., Fukao, T., Canlas, P., et al. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 442, 705–708.

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi, M., Aguilar, A. M., Vaughan, D. A., & Seshu, D. V. (1993). Rice (Oryza sativa L.) germplasm suitable for direct sowing under flooded soil surface. Euphytica, 67, 177–184.

    Article  Google Scholar 

  • Yoshida, S., Forno, D. A., Cock, J. H., & Gomez, K. A. (1976). Laboratory manual for physiological studies of rice. Los Baňos: International Rice Research Institute.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Panda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, D., Rao, D.N., Das, K.K. et al. Role of starch hydrolytic enzymes and phosphatases in relation to under water seedling establishment in rice. Ind J Plant Physiol. 22, 279–286 (2017). https://doi.org/10.1007/s40502-017-0305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-017-0305-0

Keywords

Navigation