Skip to main content
Log in

Numerical modelling of granular flows: a reality check

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Discrete particle simulations provide a powerful tool for the advancement of our understanding of granular media, and the development and refinement of the multitudinous techniques used to handle and process these ubiquitous materials. However, in order to ensure that this tool can be successfully utilised in a meaningful and reliable manner, it is of paramount importance that we fully understand the degree to which numerical models can be trusted to accurately and quantitatively recreate and predict the behaviours of the real-world systems they are designed to emulate. Due to the complexity and diverse variety of physical states and dynamical behaviours exhibited by granular media, a simulation algorithm capable of closely reproducing the behaviours of a given system may be entirely unsuitable for other systems with different physical properties, or even similar systems exposed to differing control parameters. In this paper, we focus on two widely used forms of granular flow, for which discrete particle simulations are shown to provide a full, quantitative replication of the behaviours of real industrial and experimental systems. We identify also situations for which quantitative agreement may fail are identified, but important general, qualitative trends are still recreated, as well as cases for which computational models are entirely unsuitable. By assembling this information into a single document, we hope not only to provide researchers with a useful point of reference when designing and executing future studies, but also to equip those involved in the design of simulation algorithms with a clear picture of the current strengths and shortcomings of contemporary models, and hence an improved knowledge of the most valuable areas on which to focus their work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Note that particles are geometrically still rigid. However, deformations are taken into account in force models.

  2. Central processing unit

  3. Graphics processing unit

  4. On a different note, in molecular dynamics, the same term coarse graining is used when a system is represented by a reduced (in comparison with an all-atom description) number of degrees of freedom. Due to the reduction in the degrees of freedom and elimination of fine interaction details, the simulation of a coarse-grained (CG) system requires less resources and goes faster than that for the same system in all-atom representation. As a result, an increase of orders of magnitude in the simulated time and length scales can be achieved.

  5. These continuum formulations can also be used to model industrial flows.

References

  1. de Gennes Pierre-Gilles (1999) Gran. matt.: a tentative view. Rev. Mod. Phys. 71(2):S374

    Article  Google Scholar 

  2. Duran J (2000) Sands, powders, and grains, vol 12. Springer, New York

    Book  Google Scholar 

  3. Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev. Mod. Phys. 68:1259–1273

    Article  Google Scholar 

  4. Scholz CH (1998) Earthquakes and friction laws. Nature 391(6662):37–42

    Article  Google Scholar 

  5. Iverson RM (1997) The physics of debris flows. Rev. Geophys. 35(3):245–296

    Article  Google Scholar 

  6. Johnson PA, Jia X (2005) Nonlinear dynamics, granular media and dynamic earthquake triggering. Nature 437(7060):871–874

    Article  Google Scholar 

  7. Khaldoun A, Eiser E, Wegdam GH, Bonn D (2005) Rheology: Liquefaction of quicksand under stress. Nature 437(7059):635–635

    Article  Google Scholar 

  8. Houghton IMP, Aplin KL, Nicoll KA (2013) Triboelectric charging of volcanic ash from the 2011 grímsvötn eruption. Phys. Rev. Lett. 111(11):118501

    Article  Google Scholar 

  9. Sharma I, Jenkins JT, Burns JA (2006) Tidal encounters of ellipsoidal granular asteroids with planets. Icarus 183(2):312–330

    Article  Google Scholar 

  10. Cooke MH, Stephens DJ, Bridgwater J (1976) Powder mixing–a literature survey. Powder Tech. 15(1):1–20

    Article  Google Scholar 

  11. Jaeger HM, Nagel SR, Behringer RP (2008) The physics of granular materials. Phys. Today 49(4):32–38

    Article  Google Scholar 

  12. Cates ME, Wittmer JP, Bouchaud J-P, Claudin Ph (1998) Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81(9):1841

    Article  Google Scholar 

  13. Zuriguel I, Garcimartín A, Maza D, Pugnaloni LA, Pastor JM (2005) Jamming during the discharge of gran. matt. from a silo. Phys. Rev. E 71(5):051303

    Article  Google Scholar 

  14. Vanel L, Claudin P, Bouchaud J-P, Cates ME, Clément E, Wittmer JP (2000) Stresses in silos: comparison between theoretical models and new experiments. Phys. Rev. Lett. 84(7):1439

    Article  Google Scholar 

  15. Dogangun A, Karaca Z, Durmus A, Sezen H (2009) Cause of damage and failures in silo structures. J. Perform. Constr. Fac. 23(2):65–71

    Article  Google Scholar 

  16. Williams JC (1963) The segregation of powders and granular materials. Fuel Soc. J. 14:29–34

    Google Scholar 

  17. Rosato AD, Blackmore DL, Zhang N, Lan Y (2002) A perspective on vibration-induced size segregation of granular materials. Chem. Eng. Sci. 57(2):265–275

    Article  Google Scholar 

  18. Muzzio FJ, Shinbrot T, Glasser BJ (2002) Powder technology in the pharmaceutical industry: the need to catch up fast. Powder Tech. 124(1):1–7

    Article  Google Scholar 

  19. Orpe Ashish V, Khakhar DV (2001) Scaling relations for granular flow in quasi-two-dimensional rotating cylinders. Phys. Rev. E 64(3):031302

    Article  Google Scholar 

  20. Rivas N, van der Meer D. On creating macroscopically identical granular systems with significantly different number of particles. To be published

  21. Luding S (2008) Introduction to discrete element methods: basic of contact force models and how to perform the micro-macro transition to continuum theory. Eur. J. Env. Civ. Eng. 12(7–8):785–826

    Article  Google Scholar 

  22. Cleary PW, Sawley ML (1999) Three dimensional modelling of industrial granular flows. pages 95–100, cited By 15

  23. Cleary PW (2000) Dem simulation of industrial particle flows: Case studies of dragline excavators, mixing in tumblers and centrifugal mills. Powder Tech. 109(1–3):83–104 cited By 86

    Article  Google Scholar 

  24. Cleary PW, Sawley ML (2002) Dem modelling of industrial granular flows: 3d case studies and the effect of particle shape on hopper discharge. Applied Mathematical Modelling 26(2):89–111 cited By 224

    Article  MATH  Google Scholar 

  25. Cleary PW (2004) Large scale industrial dem modelling. Eng. Comp. (Swansea, Wales) 21(2–4):169–204

    Article  MATH  Google Scholar 

  26. Cleary PW (2007) Dem modelling of particulate flow in a screw feeder. Prog. Comp. Fluid Dyn. 7(2–4):128–138

    Article  MathSciNet  MATH  Google Scholar 

  27. Cleary PW (2009) Industrial particle flow modelling using discrete element method. Eng. Comp. (Swansea, Wales) 26(6):698–743

    Article  Google Scholar 

  28. Cleary PW (2010) Dem prediction of industrial and geophysical particle flows. Particuology 8(2):106–118 cited By 30

    Article  Google Scholar 

  29. Cleary PW, Cohen RCZ, Harrison SM, Sinnott MD, Prakash M, Mead S (2013) Prediction of industrial, biophysical and extreme geophysical flows using particle methods. Eng. Comp. (Swansea, Wales) 30(2):157–196

    Article  Google Scholar 

  30. Wang LB, Frost JD, Lai JS (2004) Three-dimensional digital representation of granular material microstructure from x-ray tomography imaging. J. Comp. Civ. Eng. 18(1):28–35

    Article  Google Scholar 

  31. Nakagawa M, Altobelli SA, Caprihan A, Fukushima E, Jeong E-K (1993) Non-invasive measurements of granular flows by magnetic resonance imaging. Exp. Fluids 16(1):54–60

    Article  Google Scholar 

  32. Lueptow RM, Akonur A, Shinbrot T (2000) Piv for granular flows. Exp. Fluids 28(2):183–186

    Article  Google Scholar 

  33. Wiederseiner S, Andreini N, Epely-Chauvin G, Ancey C (2011) Refractive-index and density matching in concentrated particle suspensions: a review. Exp. Fluids 50(5):1183–1206

    Article  Google Scholar 

  34. Parker DJ, Forster RN, Fowles P, Takhar PS (2002) Positron emission particle tracking using the new birmingham positron camera. Nucl. Instrum. Methods Phys. Res., Sect. A 477(1):540–545

    Article  Google Scholar 

  35. Weinhart T, Thornton AR, Luding S, Bokhove O (2012) Closure relations for shallow granular flows from particle simulations. Granul. Matt. 14(4):531–552

    Article  Google Scholar 

  36. Weinhart T, Luding S, Thornton AR (2013) From discrete particles to continuum fields in mixtures. AIP Conf. Procs. 1542:1202

    Article  Google Scholar 

  37. Weinan E, Engquist B, Li X, Ren W, Vanden-Eijnden E (2007) Heterogeneous multiscale methods: a review. Commun. Comput. Phys 2(3):367–450

    MathSciNet  MATH  Google Scholar 

  38. Ren W (2007) Analytical and numerical study of coupled atomistic-continuum methods for fluids. J. Comp. Phys. 227(2):1353–1371

    Article  MathSciNet  MATH  Google Scholar 

  39. Markesteijn AP (2011) Connecting molecular dynamics and computational fluid dynamics. Delft University of Technology, TU Delft

    Google Scholar 

  40. Mishra S, Ramaswamy S (2006) Active nematics are intrinsically phase separated. Phys. Rev. Lett. 97(9):090602-1–090602-4

    Article  Google Scholar 

  41. Narayan V, Ramaswamy S, Menon N (2007) Long-lived giant number fluctuations in a swarming granular nematic. Science 317(5834):105–108

    Article  Google Scholar 

  42. McCandlish SR, Baskaran A, Hagan MF (2012) Spontaneous segregation of self-propelled particles with different motilities. Soft Matt. 8(8):2527–2534

    Article  Google Scholar 

  43. Viswanathan GM, Da Luz MGE, Raposo EP, Stanley HE (2011) The physics of foraging: an introduction to random searches and biological encounters. Cambridge University Press,

  44. Zuriguel I, Parisi DR, Hidalgo RC, Lozano C, Janda A, Gago PA, Peralta JP, Ferrer LM, Pugnaloni LA, Clément E et al (2014) Clogging transition of many-particle systems flowing through bottlenecks. Sci. Rep. 4:

  45. Kurtze DA, Hong DC (1995) Traffic jams, granular flow, and soliton selection. Phys. Rev. E 52(1):218

    Article  MathSciNet  Google Scholar 

  46. Helbing D, Buzna L, Johansson A, Werner T (2005) Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transport. Sci. 39(1):1–24

    Article  Google Scholar 

  47. Moussaïd M, Helbing D, Theraulaz G (2011) How simple rules determine pedestrian behavior and crowd disasters. Proc. Nat. Acad. Sci. 108(17):6884–6888

    Article  Google Scholar 

  48. Straub S (1997) Predictability of long runout landslide motion: implications from granular flow mechanics. Geologische Rundschau 86(2):415–425

    Article  Google Scholar 

  49. Pudasaini Shiva P, Hutter Kolumban (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer Science & Business Media,

  50. Johnson Paul A, Savage Heather, Knuth Matt, Gomberg Joan, Marone Chris (2008) Effects of acoustic waves on stick-slip in granular media and implications for earthquakes. Nature 451(7174):57–60

    Article  Google Scholar 

  51. Herrmann HJ, Luding S (1998) Modeling granular media on the computer. Continuum Mech. Thermodyn. 10(4):189–231

    Article  MathSciNet  MATH  Google Scholar 

  52. Goles E (1992) Sand pile automata. In: Annales de l’IHP Physique théorique, vol 56, pp 75–90. Elsevier

  53. Károlyi A, Kertész J, Havlin S, Makse HA, Stanley HE (1998) Filling a silo with a mixture of grains: friction-induced segregation. Europhys. Lett. 44(3):386

    Article  Google Scholar 

  54. Kozicki J, Tejchman J (2005) Application of a cellular automaton to simulations of granular flow in silos. Gran. Matt. 7(1):45–54

    Article  MATH  Google Scholar 

  55. Tejchman J (2013) Simulations of flow pattern with cellular automaton. In: Confined Granular Flow in Silos, pp 455–492. Springer

  56. Alonso JJ, Herrmann HJ (1996) Shape of the tail of a two-dimensional sandpile. Phys. Rev. Lett. 76(26):4911

    Article  Google Scholar 

  57. Jasti VK, Higgs CF III (2010) A fast first order model of a rough annular shear cell using cellular automata. Gran. Matt. 12(1):97–106

    Article  MATH  Google Scholar 

  58. Marinack MC, Higgs III CF (2015) Three-dimensional physics-based cellular automata model for granular shear flow. Powder Tech

  59. LaMarche KR, Conway SL, Glasser BJ, Shinbrot T (2007) Cellular automata model of gravity-driven granular flows. Gran. Matt. 9(3–4):219–229

    Article  MATH  Google Scholar 

  60. Marks B, Einav I (2011) A cellular automaton for segregation during granular avalanches. Gran. Matt. 13(3):211–214

    Article  Google Scholar 

  61. Yanagita T (1999) Three-dimensional cellular automaton model of segregation of granular materials in a rotating cylinder. Phys. Rev. Lett. 82(17):3488

    Article  Google Scholar 

  62. Santomaso AC, Artoni R, Canu P (2013) Controlling axial segregation in drum mixers through wall friction: Cellular automata simulations and experiments. Chem. Eng. Sci. 90:151–160

    Article  Google Scholar 

  63. Baxter GW, Behringer RP (1990) Cellular automata models of granular flow. Phys. Rev. A 42(2):1017–1020 cited By 57

    Article  Google Scholar 

  64. Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows

  65. Müller M, Herrmann HJ (1998) Dsmc–a stochastic algorithm for gran. matt. In: Physics of Dry Granular Media, pp 413–420. Springer

  66. Luding S, Clément E, Rajchenbach J, Duran J (1996) Simulations of pattern formation in vibrated granular media. Europhys. Lett. 36(4):247–252

    Article  Google Scholar 

  67. Reyes FV, Garzó V, Santos A (2011) Class of dilute granular couette flows with uniform heat flux. Phys. Rev. E 83(2): 021302

    Article  Google Scholar 

  68. Du M, Zhao C, Zhou B, Guo H, Hao Y (2011) A modified dsmc method for simulating gas-particle two-phase impinging streams. Chem. Eng. Sci. 66(20):4922–4931

    Article  Google Scholar 

  69. Du M, Gong J, Chen W, Wang Q (2014) Mathematical model based on dsmc method for particulate drying in a coaxial impinging stream dryer. Drying Tech., (just-accepted)

  70. Pawar SK, Padding JT, Deen NG, Jongsma A, Innings F, Kuipers JAM (2014) Lagrangian modelling of dilute granular flow–modified stochastic dsmc versus deterministic dpm. Chem. Eng. Sci. 105:132–142

    Article  Google Scholar 

  71. Ketterhagen WR, am Ende MT, Hancock BC (2009) Process modeling in the pharmaceutical industry using the discrete element method. J. Pharma. Sci 98(2):442–470

    Article  Google Scholar 

  72. Guo Y, Curtis JS (2015) Discrete element method simulations for complex granular flows. Ann. Rev. Fluid Mech. 47:21–46

    Article  Google Scholar 

  73. Zhu HP, Zhou ZY, Yang RY, Yu AB (2007) Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62(13):3378–3396

    Article  Google Scholar 

  74. Zhu HP, Zhou ZY, Yang RY, Yu AB (2008) Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63(23):5728–5770

    Article  Google Scholar 

  75. Lu G, Third JR, Müller CR (2015) Discrete element models for non-spherical particle systems: From theoretical developments to applications. Chem. Eng. Sci. 127:425–465

    Article  Google Scholar 

  76. Nguyen D-H, Azéma E, Sornay P, Radjai F (2015) Bonded-cell model for particle fracture. Phys. Rev. E 91(2):022203

    Article  MathSciNet  Google Scholar 

  77. Caulkin R, Tian W, Pasha M, Hassanpour A, Jia X (2015) Impact of shape representation schemes used in discrete element modelling of particle packing. Comput. Chem. Eng

  78. Goudeli E, Eggersdorfer M, Pratsinis SE (2015) Coagulation-agglomeration of fractal-like particles: Structure and self-preserving size distribution. Langmuir

  79. Delaney GW, Morrison RD, Sinnott MD, Cummins S, Cleary PW (2015) Dem modelling of non-spherical particle breakage and flow in an industrial scale cone crusher. Miner. Eng. 74:112–122

    Article  Google Scholar 

  80. Dong K, Wang C, Yu AB (2015) A novel method based on orientation discretization for discrete element modelling of non-spherical particles. Chem. Eng, Sci

  81. Krijgsman D, Ogarko Vitaliy, Luding Stefan (2014) Optimal parameters for a hierarchical grid data structure for contact detection in arbitrarily polydisperse particle systems. Comp. Part. Mech. 1(3):357–372

    Article  Google Scholar 

  82. Boon CW, Houlsby GT, Utili S (2012) A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method. Comput. Geotech. 44:73–82

    Article  Google Scholar 

  83. Boon CW, Houlsby GT, Utili S (2013) A new contact detection algorithm for three-dimensional non-spherical particles. Powder Tech. 248:94–102

    Article  Google Scholar 

  84. Govender N, Wilke DN, Kok S (2014) Collision detection of convex polyhedra on the nvidia gpu architecture for the discrete element method. Appl. Math, Comp

  85. Munjiza A, Walther JH, Sbalzarini IF (2009) Large-scale parallel discrete element simulations of granular flow. Eng. Comp. 26(6):688–697

    Article  Google Scholar 

  86. Kačianauskas R, Maknickas A, Kačeniauskas A, Markauskas D, Balevičius R (2010) Parallel discrete element simulation of poly-dispersed granular material. Adv. Eng. Soft. 41(1):52–63

    Article  MATH  Google Scholar 

  87. Shigeto Y, Sakai M (2011) Parallel computing of discrete element method on multi-core processors. Particuology 9(4):398–405

    Article  Google Scholar 

  88. Jung H-Y, Jun C-W, Sohn J-H (2013) Gpu-based collision analysis between a multi-body system and numerous particles. J. Mech. Sci. Tech. 27(4):973–980

    Article  Google Scholar 

  89. Yue X, Zhang H, Ke C, Luo C, Shu S, Tan Y, Feng C (2014) A gpu-based discrete element modeling code and its application in die filling. Comput, Fluids

  90. Yue X, Zhang H, Luo C, Shu S, Feng C (2014) Parallelization of a dem code based on cpu-gpu heterogeneous architecture. In: Paral. Comp. Fluid Dyna., pp 149–159. Springer

  91. Chen F, Ge W, Guo L, He X, Li B, Li J, Li X, Wang X, Yuan X (2009) Multi-scale hpc system for multi-scale discrete simulation–development and application of a supercomputer with 1 petaflops peak performance in single precision. Particuology 7(4):332–335

    Article  Google Scholar 

  92. Longmore J-P, Marais P, Kuttel MM (2013) Towards realistic and interactive sand simulation: a gpu-based framework. Powder Tech. 235:983–1000

    Article  Google Scholar 

  93. Sawley ML, Cleary PW (1999) A parallel discrete element method for industrial granular flow simulations. EPFL Supercomput. Rev. 11:23–29

    Google Scholar 

  94. Horner DA, Peters JF, Carrillo A (2001) Large scale discrete element modeling of vehicle-soil interaction. J. Eng. Mech. 127(10):1027–1032

    Article  Google Scholar 

  95. Landry JW, Grest GS, Silbert LE, Plimpton SJ (2003) Confined granular packings: structure, stress, and forces. Phys. Rev. E 67(4):041303

    Article  Google Scholar 

  96. Landry JW, Grest GS, Plimpton SJ (2004) Discrete element simulations of stress distributions in silos: crossover from two to three dimensions. Powder Tech. 139(3):233–239

    Article  Google Scholar 

  97. Venetillo JS, Celes W (2007) Gpu-based particle simulation with inter-collisions. Visual Comput. 23(9–11):851–860

    Article  Google Scholar 

  98. Xu J, Qi H, Fang X, Lu L, Ge W, Wang X, Xu M, Chen F, He X, Li J (2011) Quasi-real-time simulation of rotating drum using discrete element method with parallel gpu computing. Particuology 9(4):446–450

    Article  Google Scholar 

  99. Ren X, Xu J, Qi H, Cui L, Ge W, Li J (2013) Gpu-based discrete element simulation on a tote blender for performance improvement. Powder Tech. 239:348–357

    Article  Google Scholar 

  100. Hazeghian M, Soroush A (2015) Dem simulation of reverse faulting through sands with the aid of gpu computing. Comput. Geotech. 66:253–263

    Article  Google Scholar 

  101. Kolb A, Latta L, Rezk-Salama C (2004) Hardware-based simulation and collision detection for large particle systems. In: Proc. ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages 123–131. ACM, 2004

  102. Le Grand S (2007) Broad-phase collision detection with cuda. GPU gems 3:697–721

    Google Scholar 

  103. Lauterbach C, Mo Q, Manocha D (2010) gproximity: Hierarchical gpu-based operations for collision and distance queries. In: Comput. Graph. Forum, vol 29, pp 419–428. Wiley Online Library

  104. Liu F, Harada T, Lee Y, Kim YJ (2010) Real-time collision culling of a million bodies on graphics processing units. In: ACM Transactions on Graphics (TOG), vol 29, pp 154. ACM

  105. Pabst S, Koch A, Straßer W (2010) Fast and scalable cpu/gpu collision detection for rigid and deformable surfaces. In: Computer Graphics Forum, vol 29, pp 1605–1612. Wiley Online Library

  106. Tang M, Manocha D, Lin J, Tong R. Collision-streams: fast gpu-based collision detection for deformable models. In: Symposium on interactive 3D graphics and games, pp 63–70. ACM

  107. Zheng J, An X, Huang M (2012) Gpu-based parallel algorithm for particle contact detection and its application in self-compacting concrete flow simulations. Comput. Struct. 112:193–204

    Article  Google Scholar 

  108. Harada T, Koshizuka S, Kawaguchi Y (2007) Sliced data structure for particle-based simulations on gpus’. In: Proceedings of the 5th international conference on Computer graphics and interactive techniques in Australia and Southeast Asia, pp 55–62. ACM

  109. Radeke CA, Glasser BJ, Khinast JG (2010) Large-scale powder mixer simulations using massively parallel gpuarchitectures. Chem. Eng. Sci. 65(24):6435–6442

    Article  Google Scholar 

  110. Durand M, Marin P, Faure F, Raffin B (2012) Dem-based simulation of concrete structures on gpu. Eur. J. Env. Civ. Eng. 16(9):1102–1114

    Article  Google Scholar 

  111. Zhang L, Quigley SF, Chan AHC (2013) A fast scalable implementation of the two-dimensional triangular discrete element method on a gpu platform. Adv. Eng. Soft. 60:70–80

    Article  Google Scholar 

  112. Govender N, Wilke DN, Kok S, Els R (2014) Development of a convex polyhedral discrete element simulation framework for nvidia kepler based gpus. J. Comp. Appl. Math. 270:386–400

    Article  MathSciNet  MATH  Google Scholar 

  113. Lee SJ (2014) Developments in large scale discrete element simulations with polyhedral particles. PhD thesis, PhD Thesis, University of Illinois at Urbana-Champaign

  114. Thornton AR, Weinhart T, Ogarko V, Luding S (2013) Multi-scale methods for multi-component granular materials. Comp. Meth. Mat. Sci. 13:197–212

    Google Scholar 

  115. Adrian RJ, Westerweel J (2011) Particle image velocimetry, vol 30. Cambridge University Press,

  116. Shirsath SS, Padding JT, Deen NG, Clercx HJH, Kuipers JAM (2013) Experimental study of monodisperse granular flow through an inclined rotating chute. Powder Technol. 246:235–246

    Article  Google Scholar 

  117. Irving JH, Kirkwood John G (1950) The statistical mechanical theory of transport processes. iv. the equations of hydrodynamics. The Journal of chemical physics 18(6):817–829

    Article  MathSciNet  Google Scholar 

  118. Born M, Huang K (1954) Dynamical Theory of Crystal Lattices. Clarendon press, Oxford reissue 2000

    MATH  Google Scholar 

  119. Reichl LE (1998) A Modern Course in Statistical Physics

  120. Todd BD, Evans DJ, Davis PJ (1995) Pressure tensor for inhomogeneous fluids. Phys. Rev. E 52(2):1627–1638

    Article  Google Scholar 

  121. Weber J (1966) Recherches concernant le contraintes intergranulaires dans les milieux pulvérents; applicationa la rhéologie de ces milieux. Cahiers français rhéol 2:161–170

    Google Scholar 

  122. Cambou B, Dubujet Ph, Emeriault F, Sidoroff F (1995) Homogenization for granular materials. Eur. J. Mech. A. Solids 14(2):255–276

    MathSciNet  MATH  Google Scholar 

  123. Chang CS, Gao J (1996) Kinematic and static hypotheses for constitutive modelling of granulates considering particle rotation. Acta Mech. 115(1–4):213–229

    Article  MATH  Google Scholar 

  124. Bagi K (1996) Stress and strain in granular assemblies. Mech. Mat. 22(3):165–177

    Article  Google Scholar 

  125. Nemat-Nasser S (2000) A micromechanically-based constitutive model for frictional deformation of granular materials. J. Mech. Phys. Solids 48(6):1541–1563

    Article  MathSciNet  MATH  Google Scholar 

  126. Lätzel M, Luding S, Herrmann HJ (2001) From discontinuous models towards a continuum description. In: Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, pp 215–230. Springer

  127. Bardet JP, Vardoulakis I (2001) The asymmetry of stress in granular media. Int. J. Solids Struct. 38(2):353–367

    Article  MATH  Google Scholar 

  128. Glasser BJ, Goldhirsch I (2001) Scale dependence, correlations, and fluctuations of stresses in rapid granular flows. Phys. Fluids (1994-present) 13(2):407–420

    Article  MATH  Google Scholar 

  129. Zhu HP, Yu AB (2002) Averaging method of granular materials. Phys. Rev. E 66(2):021302

    Article  MathSciNet  Google Scholar 

  130. Ehlers W, Ramm E, Diebels S, d’Addetta GA (2003) From particle ensembles to cosserat continua: homogenization of contact forces towards stresses and couple stresses. Int. J. Solids Struct. 40(24):6681–6702

    Article  MathSciNet  MATH  Google Scholar 

  131. Kruyt NP, Rothenburg L (2004) Kinematic and static assumptions for homogenization in micromechanics of granular materials. Mech. Mat. 36(12):1157–1173

    Article  Google Scholar 

  132. Goddard JD (2008) From gran. matt. to generalized continuum. In: Mathematical Models of Gran. Matt., Lecture notes in mathematics, vol 1937, pp 1–22. Springer

  133. Goldhirsch I (2010) Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granul. Matt. 12(3):239–252

    Article  MATH  Google Scholar 

  134. Goldhirsch I, Goldenberg C (2002) On the microscopic foundations of elasticity. Eur. Phys. J. E 9(3):245–251

    Article  Google Scholar 

  135. Goldenberg C, Goldhirsch I (2004) Small and large scale granular statics. Granul. Matt. 6(2–3):87–96

    Article  MATH  Google Scholar 

  136. Goldenberg C, Goldhirsch I (2005) Friction enhances elasticity in granular solids. Nature 435(7039):188–191

    Article  Google Scholar 

  137. Goldhirsch I, Goldenberg C (2005) Continuum mechanics for small systems and fine resolutions. In: Handbook of theoretical and computational nanotechnology, pp 1–58

  138. Zhang J, Behringer RP, Goldhirsch I (2010) Coarse-graining of a physical granular system. Prog. Theor. Phys. Suppl. 184:16–30

    Article  MATH  Google Scholar 

  139. Zhu HP, Yu AB (2005) Micromechanic modeling and analysis of unsteady-state granular flow in a cylindrical hopper. In: Mathematics and Mechanics of Granular Materials, pp 307–320. Springer

  140. Zhu HP, Yu AB (2005) Steady-state granular flow in a 3d cylindrical hopper with flat bottom: macroscopic analysis. Granul. Matt. 7(2–3):97–107

    Article  MATH  Google Scholar 

  141. Weinhart T, Thornton AR, Luding S, Bokhove O (2012) From discrete particles to continuum fields near a boundary. Granul. Matt. 14(2):289–294

    Article  Google Scholar 

  142. Ries A, Brendel L, Wolf DE (2014) Coarse graining strategies at walls. Comp. Part. Mech. 1:1–14

    Article  Google Scholar 

  143. Tunuguntla DR, Thornton AR, Weinhart T (2015) From discrete elements to continuum fields: Extension to bidisperse systems. Accepted for a publication in J. Comp. Part. Mech., arXiv preprint arXiv:1504.00202

  144. Weinhart T, Hartkamp R, Thornton AR, Luding S (2013) Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys. Fluids 25(7):070605

    Article  Google Scholar 

  145. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199:177–215

    Article  MathSciNet  MATH  Google Scholar 

  146. Thornton AR, Gray JMNT, Hogg AJ (2006) A three-phase mixture theory for particle size segregation in shallow granular free-surface flows. J. Fluid Mech. 550:1–26

    Article  MathSciNet  MATH  Google Scholar 

  147. Bokhove O, Thornton AR (2012) Shallow granular flows. In: Fernando HJ (ed.) Handbook of Environmental Fluid Dynamics, Volume One: Overview and Fundamentals, pp 545–556

  148. Pouliquen O (1999) Scaling laws in granular flows down rough inclined planes. Phys. Fluids (1994-present) 11(3):542–548

    Article  MathSciNet  MATH  Google Scholar 

  149. Thornton AR, Weinhart T, Luding S, Bokhove O (2012) Frictional dependence of shallow-granular flows from discrete particle simulations. Eur. Phys, J. E

  150. Rosato AD, Yacoub D (2000) Microstructure evolution in compacted granular beds. Powder Tech. 109(1):255–261

    Article  Google Scholar 

  151. Yang SC (2006) Density effect on mixing and segregation processes in a vibrated binary granular mixture. Powder Tech. 164(2):65–74

    Article  Google Scholar 

  152. Galanis J, Harries D, Sackett DL, Losert W, Nossal R (2006) Spontaneous patterning of confined granular rods. Phys. Rev. Lett. 96(2):028002

    Article  Google Scholar 

  153. LaMarche KR, Metzger MJ, Glasser BJ, Shinbrot T (2010) Shape-mediated ordering in granular blends. Phys. Rev. E 81(5):052301

    Article  Google Scholar 

  154. Puglisi A, Loreto V, Marconi UMB, Petri A, Vulpiani A (1998) Clustering and non-gaussian behavior in gran. matt. Phys. Rev. Lett. 81(18):3848

    Article  Google Scholar 

  155. Ostojic Srdjan, Somfai Ellák, Nienhuis Bernard (2006) Scale invariance and universality of force networks in static gran. matt. Nature 439(7078):828–830

    Article  Google Scholar 

  156. Luding S, Herrmann HJ, Blumen A (1994) Simulations of two-dimensional arrays of beads under external vibrations: Scaling behavior. Phys. Rev. E 50(4):3100

    Article  Google Scholar 

  157. Eshuis P, Van Der Weele K, Van Der Meer D, Bos R, Lohse D (2007) Phase diagram of vertically shaken gran. matt. Phys. Fluids (1994-present) 19(12):123301

    Article  MATH  Google Scholar 

  158. Nicodemi M, Coniglio A, Herrmann HJ (1997) Frustration and slow dynamics of granular packings. Phys. Rev. E 55(4):3962

    Article  Google Scholar 

  159. Richard Patrick, Nicodemi Mario, Delannay Renaud, Ribiere Philippe, Bideau Daniel (2005) Slow relaxation and compaction of granular systems. Nature materials 4(2):121–128

    Article  Google Scholar 

  160. Olafsen JS, Urbach JS (1999) Velocity distributions and density fluctuations in a granular gas. Phys. Rev. E 60(3):R2468

    Article  Google Scholar 

  161. Pöschel Thorsten, Brilliantov Nikolai V (2003) Granular gas dynamics, vol 624. Springer Science & Business Media,

  162. Serero D, Goldhirsch I, Noskowicz SH, Tan M-L (2006) Hydrodynamics of granular gases and granular gas mixtures. J. Fluid Mech. 554:237–258

    Article  MathSciNet  MATH  Google Scholar 

  163. Luding Stefan, McNamara Sean (1998) How to handle the inelastic collapse of a dissipative hard-sphere gas with the tc model. Gran. Matt. 1(3):113–128

    Article  Google Scholar 

  164. Géminard J-C, Laroche C (2003) Energy of a single bead bouncing on a vibrating plate: Experiments and numerical simulations. Phys. Rev. E 68(3):031305

    Article  Google Scholar 

  165. Warr S, Cooke W, Ball RC, Huntley JM (1996) Probability distribution functions for a single-particle vibrating in one dimension: experimental study and theoretical analysis. Physica A 231(4):551–574

    Article  Google Scholar 

  166. Tufillaro NB, Mello TM, Choi YM, Albano AM (1986) Period doubling boundaries of a bouncing ball. J. Phys. 47(9):1477–1482

    Article  Google Scholar 

  167. Luding S, Clément E, Blumen A, Rajchenbach J, Duran J (1994) Studies of columns of beads under external vibrations. Phys. Rev. E 49(2):1634

    Article  Google Scholar 

  168. Goldhirsch I, Zanetti G (1993) Clustering instability in dissipative gases. Phys. Rev. Lett. 70(11):1619

    Article  Google Scholar 

  169. Miller S, Luding S (2004) Cluster growth in two-and three-dimensional granular gases. Phys. Rev. E 69(3):031305

    Article  Google Scholar 

  170. Brey JJ, Ruiz-Montero MJ (2003) Velocity distribution of fluidized granular gases in the presence of gravity. Phys. Rev. E 67(2):021307

    Article  Google Scholar 

  171. van zon JS, Kreft J, Goldman DI, Miracle D, Swift, JB, Swinney HL (2004) Crucial role of sidewalls in velocity distributions in quasi-two-dimensional granular gases. Phys. Rev. E 70(4):040301

  172. van Zon JS, MacKintosh FC (2005) Velocity distributions in dilute granular systems. Phys. Rev. E 72(5):051301

    Article  Google Scholar 

  173. Rivas N, Luding S, Thornton AR (2013) Low-frequency oscillations in narrow vibrated granular systems. New J. Phys. 15(11):113043

    Article  Google Scholar 

  174. Windows-Yule CRK, Rivas N, Parker DJ, Thornton AR (2014) Low-frequency oscillations and convective phenomena in a density-inverted vibrofluidized granular system. Phys. Rev. E. 90(6):062205

    Article  Google Scholar 

  175. Rivas N, Risso D, Soto R, Cordero P, Garrido PL, Marro J, de los Santos F (2011) Energy bursts in vibrated shallow granular systems. In: AIP Conf. Proc. vol 1332, pp 184

  176. Rivas N, Cordero P, Risso D, Soto R (2011) Segregation in quasi-two-dimensional granular systems. New J. Phys. 13(5):055018

    Article  Google Scholar 

  177. Windows-Yule CRK, Parker DJ (2014) Self-diffusion, local clustering and global segregation in binary granular systems: The role of system geometry. Powder Tech. 261:133–142

    Article  Google Scholar 

  178. Feitosa K, Menon N (2002) Breakdown of energy equipartition in a 2d binary vibrated granular gas. Phys. Rev. Lett. 88(19):198301

    Article  Google Scholar 

  179. Wildman RD, Parker DJ (2002) Coexistence of two granular temperatures in binary vibrofluidized beds. Phys. Rev. Lett. 88(6):064301

    Article  Google Scholar 

  180. Huerta DA, Ruiz-Suárez JC (2004) Vibration-induced granular segregation: a phenomenon driven by three mechanisms. Phys. Rev. Lett. 92(11):114301

    Article  Google Scholar 

  181. Wang H-Q, Jin G-J, Ma Y-Q (2003) Simulation study on kinetic temperatures of vibrated binary granular mixtures. Phys. Rev. E 68(3):031301

    Article  Google Scholar 

  182. Wildman RD, Huntley JM, Hansen J-P, Parker DJ, Allen DA (2000) Single-particle motion in three-dimensional vibrofluidized granular beds. Phys. Rev. E 62(3):3826

    Article  Google Scholar 

  183. www.Mercurydpm.org

  184. Thornton AR, Weinhart T, Luding S, Bokhove O (2012) Modeling of particle size segregation: calibration using the discrete particle method. Int. J. Modern Phys. C 23(08)

  185. Thornton AR, Krijgsman D, te Voortwis A, Ogarko V, Luding S, Fransen R, Gonzalez S, Bokhove O, Imole O, Weinhart T (2013) DEM 6: Proc. 6th Int. Conf., pp 393

  186. Khakhar DV, McCarthy JJ, Ottino JM (1999) Mixing and segregation of granular materials in chute flows. Chaos 9:594–610

    Article  MATH  Google Scholar 

  187. Windows-Yule CRK, Parker DJ (2014) Center of mass scaling in three-dimensional binary granular systems. Phys. Rev. E 89(6):062206

    Article  Google Scholar 

  188. Windows-Yule CRK, Weinhart T, Parker DJ, Thornton AR (2014) Effects of packing density on the segregative behaviors of granular systems. Phys. Rev. Lett. 112(9):098001

    Article  Google Scholar 

  189. Windows-Yule CRK, Rosato AD, Thornton AR, Parker DJ (2015) Resonance effects on the dynamics of dense granular beds: achieving optimal energy transfer in vibrated granular systems. New J. Phys. 17(2):023015

    Article  Google Scholar 

  190. Falcon E, Laroche C, Fauve S, Coste C (1998) Collision of a 1-d column of beads with a wall. The European Physical Journal B 5(1):111–131

    Article  Google Scholar 

  191. Rosato AD, Zuo L, Blackmore D, Wu H, Horntrop DJ, Parker DJ, Windows-Yule C. Dilation and Contraction Characteristics of a Tapped Granular Column. To be published

  192. Yang SC, Hsiau SS (2000) Simulation study of the convection cells in a vibrated granular bed. Chem. Eng. Sci. 55(18):3627–3637

    Article  Google Scholar 

  193. Yang S-C, Hsiau S-S (2001) Self-diffusion analysis in a vibrated granular bed. Adv. Powder Tech. 12(1):61–77

    Article  Google Scholar 

  194. Nahmad-Molinari Y, Ruiz-Suarez JC (2002) Epitaxial growth of granular single crystals. Phys. Rev. Lett. 89(26):264302

    Article  Google Scholar 

  195. D’Anna Gianfranco, Grémaud Gerard (2001) The jamming route to the glass state in weakly perturbed granular media. Nature 413(6854):407–409

    Article  Google Scholar 

  196. Mitus AC, Weber H, Marx D (1997) Local structure analysis of the hard-disk fluid near melting. Phys. Rev. E 55(6):6855

    Article  Google Scholar 

  197. Reis Pedro M, Ingale Rohit A, Shattuck Mark D (2006) Crystallization of a quasi-two-dimensional granular fluid. Phys. Rev. Lett. 96(25):258001

    Article  Google Scholar 

  198. Chaikin PM, Lubensky Tom C (2000) Principles of condensed matter physics, vol 1. Cambridge Univ. Press,

  199. Moučka F, Nezbeda I (2005) Detection and characterization of structural changes in the hard-disk fluid under freezing and melting conditions. Phys. Rev. Lett. 94(4):040601

    Article  Google Scholar 

  200. Wildman RD, Huntley JM, Parker DJ (2001) Granular temperature profiles in three-dimensional vibrofluidized granular beds. Phys. Rev. E 63(6):061311

    Article  Google Scholar 

  201. Murdoch N, Michel P, Richardson DC, Nordstrom K, Berardi CR, Green SF, Losert W (2012) Numerical simulations of granular dynamics ii: Particle dynamics in a shaken granular material. Icarus 219(1):321–335

    Article  Google Scholar 

  202. Windows-Yule CRK, Rosato AD, Rivas N, Parker DJ (2014) Influence of initial conditions on granular dynamics near the jamming transition. New J. Phys. 16(6):063016

    Article  Google Scholar 

  203. Arsenović D, Vrhovac SB, Jakšić ZM, Budinski-Petković Lj, Belić A (2006) Simulation study of granular compaction dynamics under vertical tapping. Phys. Rev. E 74(6):061302

    Article  Google Scholar 

  204. Hiemenz PC, Rajagopalan R (1997) Principles of Colloid and Surface Chemistry, revised and expanded, vol 14. CRC Press,

  205. Verma R, Crocker JC, Lubensky TC, Yodh AG (1998) Entropic colloidal interactions in concentrated dna solutions. Phys. Rev. Lett. 81(18):4004

    Article  Google Scholar 

  206. Windows-Yule CRK, Douglas GJM, Parker DJ. Competition between geometrically induced and density-driven segregation mechanisms in vibrofluidized granular systems. Accepted for Publication in Phys. Rev. E

  207. Roskilly SJ, Colbourn EA, Alli O, Williams D, Paul KA, Welfare EH, Trusty PA (2010) Investigating the effect of shape on particle segregation using a monte carlo simulation. Powder Tech. 203(2):211–222

    Article  Google Scholar 

  208. Harth K, Kornek U, Trittel T, Strachauer U, Höme S, Will K, Stannarius R (2013) Granular gases of rod-shaped grains in microgravity. Phys. Rev. Lett. 110(14):144102

    Article  Google Scholar 

  209. Windows-Yule CRK, Maddox B, Parker DJ (2014) The role of rotational inertia in the dynamics of vibrofluidised granular gases. Europhys. Lett. 108(5):58006

    Article  Google Scholar 

  210. McNamara S, Luding S (1998) Energy flows in vibrated granular media. Phys. Rev. E 58(1):813

    Article  Google Scholar 

  211. Zou RP, Yu AB (1996) Evaluation of the packing characteristics of mono-sized non-spherical particles. Powd. Tech. 88(1):71–79

    Article  Google Scholar 

  212. Abreu CRA, Tavares FW, Castier M (2003) Influence of particle shape on the packing and on the segregation of spherocylinders via monte carlo simulations. Powder Tech. 134(1):167–180

    Article  Google Scholar 

  213. Ouadfel H, Rothenburg L (1999) An algorithm for detecting inter-ellipsoid contacts. Comput. Geotech. 24(4):245–263

    Article  Google Scholar 

  214. Pournin L, Weber M, Tsukahara M, Ferrez J-A, Ramaioli M, Liebling ThM (2005) Three-dimensional distinct element simulation of spherocylinder crystallization. Granul. Matt. 7(2–3):119–126

    Article  MATH  Google Scholar 

  215. Villarruel FX, Lauderdale BE, Mueth DM, Jaeger HM (2000) Compaction of rods: Relaxation and ordering in vibrated, anisotropic granular material. Phys. Rev. E 61(6):6914

    Article  Google Scholar 

  216. Nouguier-Lehon C, Cambou B, Vincens E (2003) Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysis. Int. J. Numer. Analyt. Meth. Geomech. 27(14):1207–1226

    Article  MATH  Google Scholar 

  217. Pena AA, Garcia-Rojo R, Herrmann HJ (2007) Influence of particle shape on sheared dense granular media. Granul. Matt. 9(3–4):279–291

    Article  MATH  Google Scholar 

  218. Cleary PW, Sawley ML (2002) Dem modelling of industrial granular flows: 3d case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26(2):89–111

    Article  MATH  Google Scholar 

  219. Wang J, Yu HS, Langston P, Fraige F (2011) Particle shape effects in discrete element modelling of cohesive angular particles. Granul. Matt. 13(1):1–12

    Article  Google Scholar 

  220. Favier JF, Abbaspour-Fard MH, Kremmer M, Raji AO (1999) Shape representation of axi-symmetrical, non-spherical particles in discrete element simulation using multi-element model particles. Eng. Comp. 16(4):467–480

    Article  MATH  Google Scholar 

  221. Kruggel-Emden H, Rickelt S, Wirtz S, Scherer V (2008) A study on the validity of the multi-sphere discrete element method. Powder Tech. 188(2):153–165

    Article  Google Scholar 

  222. Markauskas D, Kačianauskas R, Džiugys A, Navakas R (2010) Investigation of adequacy of multi-sphere approximation of elliptical particles for dem simulations. Granul. Matt. 12(1):107–123

    Article  MATH  Google Scholar 

  223. Markauskas D, Kačianauskas R (2011) Investigation of rice grain flow by multi-sphere particle model with rolling resistance. Granul. Matt. 13(2):143–148

    Article  Google Scholar 

  224. Džiugys A, Peters B (2001) An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers. Granul. matt. 3(4):231–266

    Article  Google Scholar 

  225. Wellmann C, Lillie C, Wriggers P (2008) A contact detection algorithm for superellipsoids based on the common-normal concept. Eng. Comp. 25(5):432–442

    Article  MATH  Google Scholar 

  226. Chung YC, Liao HH, Hsiau SS (2013) Convection behavior of non-spherical particles in a vibrating bed: Discrete element modeling and experimental validation. Powder Tech. 237:53–66

    Article  Google Scholar 

  227. Pei C, Chuan-Yu Wu, Adams M, England D, Byard S, Berchtold H (2014) Contact electrification and charge distribution on elongated particles in a vibrating container. Chem. Eng,Sci

  228. Gray JMNT, Wieland M, Hutter K (1999) Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. London, A 455(1985):1841–1874

    Article  MathSciNet  MATH  Google Scholar 

  229. Shinbrot T, Kim NH, Thyagu NN (2012) Electrostatic precursors to granular slip events. Proc. Nat. Acad. Sci. 109(27):10806–10810

    Article  Google Scholar 

  230. Leeman JR, Scuderi MM, Marone C, Saffer DM, Shinbrot T (2014) On the origin and evolution of electrical signals during frictional stick slip in sheared granular material. J. Geophys. Res , Solid Earth

  231. Forterre Y, Pouliquen O (2008) Flows of dense granular media. Annu. Rev. Fluid Mech. 40:1–24

    Article  MathSciNet  MATH  Google Scholar 

  232. MiDia GDR (2004) On dense granular flows. Eur. Phys. J. E 14:341–365

    Article  Google Scholar 

  233. Maas HG, Gruen A, Papantoniou D (1993) Particle tracking velocimetry in three-dimensional flows. Exp. Fluids 15(2):133–146

    Article  Google Scholar 

  234. Savage SB, McKeown S (1983) Shear stresses developed during rapid shear of concentrated suspensions of large spherical particles between concentric cylinders. J. Fluid Mech. 127:453–472

    Article  Google Scholar 

  235. Zenit R, Hunt ML, Brennen CE (1997) Collisional particle pressure measurements in solid-liquid flows. J. Fluid Mech. 353:261–283

    Article  Google Scholar 

  236. Bennett SJ, Best JL (1995) Particle size and velocity discrimination in a sediment-laden turbulent flow using phase doppler anemometry. J. Fluids Eng. 117(3):505–511

    Article  Google Scholar 

  237. Dave RN, Rosato A, Fischer IS (1999) Non-intrusive particle tracking system for particulate flows and vibrated granular beds. Particul. Sci. Technol. 17(1–2):125–139

    Article  Google Scholar 

  238. Louge MY, Steiner R, Keast SC, Decker R, Dent J, Schneebeli M (1997) Application of capacitance instrumentation to the measurement of density and velocity of flowing snow. Cold Reg. Sci. Technol. 25(1):47–63

    Article  Google Scholar 

  239. Dent JD, Burrell KJ, Schmidt DS, Louge MY, Adams EE, Jazbutis TG (1998) Density, velocity and friction measurements in a dry-snow avalanche. Annals Glaciology 26:247–252

    Google Scholar 

  240. Guler M, Edil TB, Bosscher PJ (1999) Measurement of particle movement in granular soils using image analysis. J. Comput. Civ. Eng. 13(2):116–122

    Article  Google Scholar 

  241. Capart H, Young DL, Zech Y (2002) Voronoï imaging methods for the measurement of granular flows. Exp. Fluids 32(1):121–135

    Article  Google Scholar 

  242. Bonamy D, Daviaud F, Laurent L (2002) Experimental study of granular surface flows via a fast camera: a continuous description. Phys. Fluids (1994-present) 14(5):1666–1673

    Article  MATH  Google Scholar 

  243. Dijksman JA, Rietz F, Lőrincz KA, van Hecke M, Losert W (2012) Invited article: Refractive index matched scanning of dense granular materials. Rev. Sci. Instrum. 83(1):011301

    Article  Google Scholar 

  244. McDonald SA, Harris D, Withers PJ (2012) In-situ x-ray microtomography study of the movement of a granular material within a die. Int. J. Mat. Res. 103(2):162–169

    Article  Google Scholar 

  245. Ehrichs EE, Jaeger HM, Karczmar GS, Knight JB, Kuperman VY, Nagel SR (1995) Granular convection observed by magnetic resonance imaging. Science 267(5204):1632–1634

    Article  Google Scholar 

  246. Ridgway K, Rupp R (1970) Flow of granular material down chutes. Chem. Proc, Eng 51

  247. Suzuki A, Tanaka T (1971) Measurement of flow properties of powders along an inclined plane. Indus. Eng. Chem. Fund. 10(1):84–91

    Article  Google Scholar 

  248. Augenstein DA, Hogg R (1974) Friction factors for powder flow. Powder Tech. 10(1):43–49

    Article  Google Scholar 

  249. Augenstein DA, Hogg R (1978) An experimental study of the flow of dry powders over inclined surfaces. Powder Tech. 19(2):205–215

    Article  Google Scholar 

  250. Savage SB (1979) Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92(01):53–96

    Article  MATH  Google Scholar 

  251. Hwang CL, Hogg R (1980) Diffusive mixing in flowing powders. Powder Tech. 26(1):93–101

    Article  Google Scholar 

  252. Brennen CE, Sieck K, Paslaski J (1983) Hydraulic jumps in granular material flow. Powder Tech. 35(1):31–37

    Article  Google Scholar 

  253. Campbell CS, Brennen CE (1982) Computer simulation of chute flows of granular materials. In: IUTAM conference on deformation and failure of granular materials, Delft. A. A. Balkema Publishing Company, Rotterdam, pp 515–521

  254. Walton OR (1984) Application of molecular dynamics to macroscopic particles. Int. J. Eng. Sci. 22(8):1097–1107

    Article  MathSciNet  Google Scholar 

  255. Campbell CS, Brennen CE (1985) Chute flows of granular material: some computer simulations. J. Appl. Mech. 52(1):172–178

    Article  Google Scholar 

  256. Lun CKK, Savage SB, Jefferey DJ, Chepurniy N (1984) Kinetic theories for granular flow: inelastic particles in couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech. 140(223–222):256

    MATH  Google Scholar 

  257. Hunger O, Morgenstern NR (1984) Experiments on the flow behaviour of granular materials at high velocity in an open channel. Geotechnique 34(3):405–413

    Article  Google Scholar 

  258. Ahn H, Brennen CE, Sabersky RH (1987) Experiments on chute flows of granular materials. Micromech. Granul. Mat. 20:339–348

    Google Scholar 

  259. Patton JS, Brennen CE, Sabersky RH (1987) Shear flows of rapidly flowing granular materials. J. Appl. Mech. 54(4):801–805

    Article  Google Scholar 

  260. Campbell CS (1990) Rapid granular flows. Ann. Rev. Fluid Mech. 22(1):57–90

    Article  Google Scholar 

  261. Drake TG (1990) Structural features in granular flows. J. Geophys. Res.: Solar Earth 95(B6):8681–8696

    Article  Google Scholar 

  262. Johnson PC, Nott P, Jackson R (1990) Frictional-collisional equations of motion for participate flows and their application to chutes. J. Fluid Mech. 210:501–535

    Article  Google Scholar 

  263. Savage SB, Lun CKK (1988) Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189:311–335

    Article  Google Scholar 

  264. Savage SB, Hutter K (1991) The dynamics of avalanches of granular materials from initiation to runout. part i: Analysis. Acta Mech. 86:201–223

    Article  MathSciNet  MATH  Google Scholar 

  265. Pöschel T (1993) Granular material flowing down an inclined chute: a molecular dynamics simulation. J. Phys. II 3(1):27–40

    Google Scholar 

  266. Pouliquen O, Renaut N (1996) Onset of granular flows on an inclined rough surface: dilatancy effects. J. Phys. II 6(6):923–935

    Google Scholar 

  267. Zheng XM, Hill JM (1996) Molecular dynamics modelling of granular chute flow: density and velocity profiles. Powder Tech. 86(2):219–227

    Article  Google Scholar 

  268. Walton OR (1993) Numerical simulation of inclined chute flows of monodisperse, inelastic, frictional spheres. Mech. Mat. 16(1):239–247

    Article  MathSciNet  Google Scholar 

  269. Hanes DM, Walton OR (2000) Simulations and physical measurements of glass spheres flowing down a bumpy incline. Powder Tech. 109(1):133–144

    Article  Google Scholar 

  270. Lorenz A, Tuozzolo C, Louge MY (1997) Measurements of impact properties of small, nearly spherical particles. Exp. Mech. 37(3):292–298

    Article  Google Scholar 

  271. Silbert LE, Ertaş D, Grest GS, Halsey TC, Levine D, Plimpton SJ (2001) Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64(5):051302

    Article  Google Scholar 

  272. Silbert LE, Grest GS, Plimpton SJ, Levine D (2002) Boundary effects and self-organization in dense granular flows. Phys. Fluids (1994-present) 14(8):2637–2646

    Article  MathSciNet  MATH  Google Scholar 

  273. Silbert LE, Landry JW, Grest GS (2003) Granular flow down a rough inclined plane: transition between thin and thick piles. Phys. Fluids (1994-present) 15(1):1–10

    Article  MathSciNet  MATH  Google Scholar 

  274. Lemieux P-A, Durian DJ (2000) From avalanches to fluid flow: A continuous picture of grain dynamics down a heap. Phys. Rev. Lett. 85(20):4273

    Article  Google Scholar 

  275. Ancey C (2001) Dry granular flows down an inclined channel: Experimental investigations on the frictional-collisional regime. Phys. Rev. E 65(1):011304

    Article  Google Scholar 

  276. Pouliquen O, Forterre Y (2002) Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453:133–151

    Article  MATH  Google Scholar 

  277. Bhattacharya T, McCarthy JJ (2014) Chute flow as a means of segregation characterization. Powder Tech. 256:126–139

    Article  Google Scholar 

  278. Shirsath SS, Padding JT, Kuipers JAM, Peeters TWJ, Clercx HJH (2014) Numerical investigation of monodisperse granular flow through an inclined rotating chute. AIChE 60(10):3424–3441

    Article  Google Scholar 

  279. Tunuguntla DR, Bokhove O, Thornton AR (2014) A mixture theory for size and density segregation in shallow granular free-surface flows. J. Fluid Mech. 749:99–112

    Article  MathSciNet  Google Scholar 

  280. Jenkins JT, Yoon DK (2002) Segregation in binary mixtures under gravity. Phys. Rev. Let. 88(19):194301

    Article  Google Scholar 

  281. Bridgwater J (1976) Fundamental powder mixing mechanisms. Powder Tech. 15(2):215–236

    Article  Google Scholar 

  282. Metcalfe G, Shinbrot T, McCarthy J, Ottino JM (2013) Avalanche mixing of granular solids. Nature 374(6517):39–41

  283. Hogg R (2009) Mixing and segregation in powders: evaluation, mechanisms and processes. KONA 27:3–17

    Article  Google Scholar 

  284. Bridgwater J (2010) Mixing of particles and powders: Where next? Particuology 8(6):563–567

  285. Dolgunin VN, Ukolov AA (1995) Segregation modeling of particle rapid gravity flow. Powder Tech. 83(2):95–103

    Article  Google Scholar 

  286. Félix G, Thomas N (2004) Evidence of two effects in the size segregation process in dry granular media. Phys. Rev. E 70(5):051307

  287. Dolgunin VN, Ukolov AA, Ivanov OO (2006) Segregation kinetics in the rapid gravity flow of granular materials. Theor. Found. Chem. Eng. 40(4):393–404

    Article  Google Scholar 

  288. Dolgunin VN, Ivanov OO, Ukolov AA (2009) Segregation kinetics of particles with different roughneses and elasticities under a rapid gravity flow of a granular medium. Theor. Found. Chem. Eng. 43(2):187–195

    Article  Google Scholar 

  289. Wiederseiner S, Andreini N, Épely-Chauvin G, Moser G, Monnereau M, Gray JMNT, Ancey C (2011) Experimental investigation into segregating granular flows down chutes. Phys. Fluids (1994 — present) 23:013301

    Article  Google Scholar 

  290. Hajra SK, Shi D, McCarthy JJ (2012) Granular mixing and segregation in zigzag chute flow. Phys. Rev. E 86(6):061318

    Article  Google Scholar 

  291. van der Vaart K, Gajjar P, Epely-Chauvin G, Andreini N, Gray JMNT, Ancey C (2015) An underlying asymmetry within particle-size segregation. arXiv preprint arXiv:1501.06879

  292. Vu-Quoc L, Zhang X, Walton OR (2000) A 3-d discrete-element method for dry granular flows of ellipsoidal particles. Comput. Meth. Appl. Mech. Eng. 187(3):483–528

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the late Dr. Michael Hawkesworth who, through the provision of the Hawkesworth Scholarship, facilitated the use of positron emission particle tracking to produce experimental results presented in this work. Furthermore, the authors would also like to acknowledge the Dutch technology foundation STW for their financial support. Additionally, we thank Anthony Thornton and Thomas Weinhart for their fruitful inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. K. Windows-Yule.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Windows-Yule, C.R.K., Tunuguntla, D.R. & Parker, D.J. Numerical modelling of granular flows: a reality check. Comp. Part. Mech. 3, 311–332 (2016). https://doi.org/10.1007/s40571-015-0083-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-015-0083-2

Keywords

Navigation