Skip to main content

Advertisement

Log in

Benign prostatic hyperplasia: a new metabolic disease?

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS) are conditions extremely prevalent in the aging male. Although androgens are involved in prostate growth during developmental age, their role in the pathogenesis of BPH/LUTS is debated. Recent data indicate that low testosterone and high estradiol favor disease progression. In addition, the role of other determinants, such as metabolic syndrome or prostate inflammation, is emerging.

Aim

We reviewed the evidence regarding the pathogenesis of BPH/LUTS with particular attention to metabolic influence.

Materials and methods

A review of published evidence was performed using Medline.

Results

Available evidence shows that a three-hit hypothesis can be drawn. An overt, or even a subclinical, bacterial or viral infection could induce prostatic inflammation (first hit) that could be autosustained or exacerbated by the presence of an altered metabolism and in particular by hypercholesterolemia (second hit). Hypogonadism and/or hyperestrogenism could act as a third hit, favoring the maintenance of this inflammatory state. The combined action of all three hits, or even two of them, may result in overexpression of Toll-like receptors (TLRs), transformation of prostatic cells into antigen-presenting cells and activation of resident human prostate-associated lymphoid tissue ending in overproduction of growth factors which, in turn, will induce prostate remodeling and further prostate enlargement. The mechanical obstruction, along with the direct action of the unfavorable metabolic and hormonal milieu on the bladder neck, helps in generating LUTS.

Conclusion

Inflammation, dyslipidemia and altered sex-steroid milieu mutually concur in determining BPH/LUTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maggi M, Crescioli C, Morelli A, Colli E, Adorini L (2006) Pre-clinical evidence and clinical translation of benign prostatic hyperplasia treatment by the vitamin D receptor agonist BXL-628 (Elocalcitol). J Endocrinol Invest 29:665–674

    Article  PubMed  CAS  Google Scholar 

  2. Adorini L, Penna G, Fibbi B, Maggi M (2010) Vitamin D receptor agonists target static, dynamic, and inflammatory components of benign prostatic hyperplasia. Ann N Y Acad Sci 1193:146–152

    Article  PubMed  CAS  Google Scholar 

  3. Berry SJ, Coffey DS, Walsh PC, Ewing LL (1984) The development of human benign prostatic hyperplasia with age. J Urol 132:474–479

    PubMed  CAS  Google Scholar 

  4. Abrams P (1999) LUTS, BPH, BPE, BPO: a plea for the logical use of correct terms. Rev Urol 1:65

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Andersson KE, Arner A (2004) Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 84:935–986

    Article  PubMed  CAS  Google Scholar 

  6. Fibbi B, Penna G, Morelli A, Adorini L, Maggi M (2010) Chronic inflammation in the pathogenesis of benign prostatic hyperplasia. Int J Androl 33:475–488

    Article  PubMed  CAS  Google Scholar 

  7. Corona G, Baldi E, Maggi M (2011) Androgen regulation of prostate cancer: where are we now? J Endocrinol Invest 34:232–243

    Article  PubMed  CAS  Google Scholar 

  8. Behre HM, Bohmeyer J, Nieschlag E (1994) Prostate volume in testosterone-treated and untreated hypogonadal men in comparison to age-matched normal controls. Clin Endocrinol (Oxf) 40:341–349

    Article  CAS  Google Scholar 

  9. Hunter J (1976) Observations on the glands situated between the rectum and bladder, called vesiculae seminales. In: Palmer JF (ed) Collected works of John Hunter, vol 4. Langman, London, p 31

    Google Scholar 

  10. Zuckerman S (1936) The endocrine control of the prostate: (section of urology). Proc R Soc Med 29:1557–1568

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Wilson JD (1972) Recent studies on the mechanism of action of testosterone. N Engl J Med 287:1284–1291

    Article  PubMed  CAS  Google Scholar 

  12. Emberton M, Fitzpatrick JM, Rees J (2011) Risk stratification for benign prostatic hyperplasia (BPH) treatment. BJU Int 10:876–880

    Article  Google Scholar 

  13. Gravas S, Oelke M (2010) Current status of 5alpha-reductase inhibitors in the management of lower urinary tract symptoms and BPH. World J Urol 28:9–15

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Corona G, Rastrelli G, Maseroli E et al (2012) Inhibitors of 5α-reductase-related side effects in patients seeking medical care for sexual dysfunction. J Endocrinol Invest 35:915–920

    PubMed  CAS  Google Scholar 

  15. Lenzi A, Balercia G, Bellastella A et al (2009) Epidemiology, diagnosis, and treatment of male hypogonadotropic hypogonadism. J Endocrinol Invest 32:934–938

    Article  PubMed  CAS  Google Scholar 

  16. Liu CC, Huang SP, Li WM et al (2007) Relationship between serum testosterone and measures of benign prostatic hyperplasia in aging men. Urology 70:677–680

    Article  PubMed  Google Scholar 

  17. Martin S, Lange K, Haren MT, Taylor AW, Wittert G, Members of the Florey Adelaide Male Ageing Study (2013) Risk factors for progression and improvement of lower urinary tract symptoms (LUTS) in a prospective cohort of men. J Urol doi: 10.1016/j.juro.2013.06.018. (Epub ahead of print)

  18. Isaacs JT (1983) Changes in dihydrotestosterone metabolism and the development of benign prostatic hyperplasia in the aging beagle. J Steroid Biochem 18:749–757

    Article  PubMed  CAS  Google Scholar 

  19. Bartsch W, Klein H, Schiemann U, Bauer HW, Voigt KD (1990) Enzymes of androgen formation and degradation in the human prostate. Ann N Y Acad Sci 595:53–66

    Article  PubMed  CAS  Google Scholar 

  20. Corona G, Lee DM, Forti G, EMAS Study Group et al (2010) Age-related changes in general and sexual health in middle-aged and older men: results from the European Male Ageing Study (EMAS). J Sex Med 7:1362–1380

    Article  PubMed  Google Scholar 

  21. Marks LS, Mazer NA, Mostaghel E et al (2006) Effect of testosterone replacement therapy on prostate tissue in men with late-onset hypogonadism: a randomized controlled trial. JAMA 296:2351–2361

    Article  PubMed  CAS  Google Scholar 

  22. Tenover JS (1992) Effects of testosterone supplementation in the aging male. J Clin Endocrinol Metab 75:1092–1098

    PubMed  CAS  Google Scholar 

  23. Holmäng S, Mårin P, Lindstedt G, Hedelin H (1993) Effect of long-term oral testosterone undecanoate treatment on prostate volume and serum prostate-specific antigen concentration in eugonadal middle-aged men. Prostate 23:99–106

    Article  PubMed  Google Scholar 

  24. Shigehara K, Sugimoto K, Konaka H et al (2011) Androgen replacement therapy contributes to improving lower urinary tract symptoms in patients with hypogonadism and benign prostate hypertrophy: a randomised controlled study. Aging Male 14:53–58

    Article  PubMed  Google Scholar 

  25. Haider A, Gooren LJ, Padungtod P, Saad F (2009) Concurrent improvement of the metabolic syndrome and lower urinary tract symptoms upon normalisation of plasma testosterone levels in hypogonadal elderly men. Andrologia 41:7–13

    Article  PubMed  CAS  Google Scholar 

  26. Kalinchenko S, Vishnevskiy EL, Koval AN, Mskhalaya GJ, Saad F (2008) Beneficial effects of testosterone administration on symptoms of the lower urinary tract in men with late-onset hypogonadism: a pilot study. Aging Male 11:57–61

    Article  PubMed  CAS  Google Scholar 

  27. Pearl JA, Berhanu D, François N et al (2013) Testosterone supplementation does not worsen lower urinary tract symptoms. J Urol doi:10.1016/j.juro.2013.05.111. (Epub ahead of print)

  28. Ko YH, du Moon G, Moon KH (2013) Testosterone replacement alone for testosterone deficiency syndrome improves moderate lower urinary tract symptoms: one year follow-up. World J Men’s Health 31:47–52

    Article  Google Scholar 

  29. Karazindiyanoğlu S, Cayan S (2008) The effect of testosterone therapy on lower urinary tract symptoms/bladder and sexual functions in men with symptomatic late-onset hypogonadism. Aging Male 11:146–149

    Article  PubMed  CAS  Google Scholar 

  30. Morgentaler A, Traish AM (2009) Shifting the paradigm of testosterone and prostate cancer: the saturation model and the limits of androgen-dependent growth. Eur Urol 55:310–320

    Article  PubMed  Google Scholar 

  31. Rastrelli G, Corona G, Vignozzi L et al (2013) Serum PSA as a predictor of testosterone deficiency. J Sex Med doi:10.1111/jsm.12266. (Epub ahead of print)

  32. Comeglio P, Morelli A, Cellai I et al (2013) Opposite effects of tamoxifen on metabolic syndrome-induced bladder and prostate alterations: a role for GPR30/GPER? Prostate doi:10.1002/pros.22723. (Epub ahead of print)

  33. Nicholson TM, Ricke WA (2011) Androgens and estrogens in benign prostatic hyperplasia: past, present and future. Differentiation 82:184–199

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Chavalmane AK, Comeglio P, Morelli A et al (2010) Sex steroid receptors in male human bladder: expression and biological function. J Sex Med 7:2698–2713

    Article  PubMed  CAS  Google Scholar 

  35. Robinette CL (1988) Sex-hormone-induced inflammation and fibromuscular proliferation in the rat lateral prostate. Prostate 12:271–286

    Article  PubMed  CAS  Google Scholar 

  36. Harris MT, Feldberg RS, Lau KM, Lazarus NH, Cochrane DE (2000) Expression of proinflammatory genes during estrogen-induced inflammation of the rat prostate. Prostate 44:19–25

    Article  PubMed  CAS  Google Scholar 

  37. Schatzl G, Brössner C, Schmid S et al (2000) Endocrine status in elderly men with lower urinary tract symptoms: correlation of age, hormonal status, and lower urinary tract function. The Prostate Study Group of the Austrian Society of Urology. Urology 55:397–402

    Article  PubMed  CAS  Google Scholar 

  38. Rohrmann S, Nelson WG, Rifai N et al (2007) Serum sex steroid hormones and lower urinary tract symptoms in third National Health and Nutrition Examination Survey (NHANES III). Urology 69:708–713

    Article  PubMed  Google Scholar 

  39. Partin AW, Oesterling JE, Epstein JI, Horton R, Walsh PC (1991) Influence of age and endocrine factors on the volume of benign prostatic hyperplasia. J Urol 145:405–409

    PubMed  CAS  Google Scholar 

  40. Meikle AW, Stephenson RA, McWhorter WP, Skolnick MH, Middleton RG (1995) Effects of age, sex steroids, and family relationships on volumes of prostate zones in men with and without prostate cancer. Prostate 26:253–259

    Article  PubMed  CAS  Google Scholar 

  41. Hammarsten J, Damber JE, Karlsson M et al (2009) Insulin and free oestradiol are independent risk factors for benign prostatic hyperplasia. Prostate Cancer Prostatic Dis 12:160–165

    Article  PubMed  CAS  Google Scholar 

  42. Miwa Y, Kaneda T, Yokoyama O (2008) Association between lower urinary tract symptoms and serum levels of sex hormones in men. Urology 72:552–555

    Article  PubMed  Google Scholar 

  43. St Sauver JL, Jacobson DJ, McGree ME et al (2011) Associations between longitudinal changes in serum estrogen, testosterone, and bioavailable testosterone and changes in benign urologic outcomes. Am J Epidemiol 173:787–796

    Article  PubMed Central  PubMed  Google Scholar 

  44. Martin S, Lange K, Haren MT, Taylor AW, Wittert G, Members of the Florey Adelaide Male Ageing Study (2013) Risk factors for progression and improvement of lower urinary tract symptoms (LUTS) in a prospective cohort of men. J Urol doi:10.1016/j.juro.2013.06.018. (Epub ahead of print)

  45. Kastner P, Krust A, Turcotte B et al (1990) Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J 9:1603–1614

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Gronemeyer H, Meyer ME, Bocquel MT, Kastner P, Turcotte B, Chambon P (1991) Progestin receptors: isoforms and antihormone action. J Steroid Biochem Mol Biol 40:271–278

    Article  PubMed  CAS  Google Scholar 

  47. Ing NH, Tornesi MB (1997) Estradiol up-regulates estrogen receptor and progesterone receptor gene expression in specific ovine uterine cells. Biol Reprod 56:1205–1215

    Article  PubMed  CAS  Google Scholar 

  48. Vignozzi L, Morelli A, Sarchielli E et al (2012) Testosterone protects from metabolic syndrome-associated prostate inflammation: an experimental study in rabbit. J Endocrinol 212:71–84

    Article  PubMed  CAS  Google Scholar 

  49. Morelli A, Comeglio P, Filippi S et al (2012) Testosterone and farnesoid X receptor agonist INT-747 counteract high fat diet-induced bladder alterations in a rabbit model of metabolic syndrome. J Steroid Biochem Mol Biol 132:80–92

    Article  PubMed  CAS  Google Scholar 

  50. Di Carlo E, Magnasco S, D’Antuono T, Tenaglia R, Sorrentino C (2007) The prostate-associated lymphoid tissue (PALT) is linked to the expression of homing chemokines CXCL13 and CCL21. Prostate 67:1070–1080

    Article  PubMed  CAS  Google Scholar 

  51. Kohnen PW, Drach GW (1979) Patterns of inflammation in prostatic hyperplasia: a histologic and bacteriologic study. J Urol 121:755–760

    PubMed  CAS  Google Scholar 

  52. Theyer G, Kramer G, Assmann I et al (1992) Phenotypic characterization of infiltrating leukocytes in benign prostatic hyperplasia. Lab Invest 66:96–107

    PubMed  CAS  Google Scholar 

  53. Steiner GE, Stix U, Handisurya A et al (2003) Cytokine expression pattern in benign prostatic hyperplasia infiltrating T cells and impact of lymphocytic infiltration on cytokine mRNA profile in prostatic tissue. Lab Invest 83:1131–1146

    Article  PubMed  CAS  Google Scholar 

  54. Steiner GE, Newman ME, Paikl D et al (2003) Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate. Prostate 56:171–182

    Article  PubMed  CAS  Google Scholar 

  55. Penna G, Fibbi B, Amuchastegui S et al (2009) Human benign prostatic hyperplasia stromal cells as inducers and targets of chronic immuno-mediated inflammation. J Immunol 182:4056–4064

    Article  PubMed  CAS  Google Scholar 

  56. Vignozzi L, Cellai I, Santi R et al (2012) Antiinflammatory effect of androgen receptor activation in human benign prostatic hyperplasia cells. J Endocrinol 214:31–43

    Article  PubMed  CAS  Google Scholar 

  57. Vignozzi L, Gacci M, Cellai I et al (2013) Fat boosts, while androgen receptor activation counteracts, BPH-associated prostate inflammation. Prostate 73:789–800

    Article  PubMed  CAS  Google Scholar 

  58. Roehrborn CG, Nuckolls JG, Wei JT, Steers W, BPH Registry and Patient Survey Steering Committee (2007) The benign prostatic hyperplasia registry and patient survey: study design, methods and patient baseline characteristics. Br J Urol 100:813–819

    Article  Google Scholar 

  59. Nickel JC, Roehrborn CG, O’Leary MP, Bostwick DG, Somerville MC, Rittmaster RS (2008) The relationship between prostate inflammation and lower urinary tract symptoms: examination of baseline data from the REDUCE trial. Eur Urol 54:1379–1384

    Article  PubMed Central  PubMed  Google Scholar 

  60. Hochreiter WW, Duncan JL, Schaeffer AJ (2000) Evaluation of the bacterial flora of the prostate using a 16S rRNA gene based polymerase chain reaction. J Urol 163:127–130

    Article  PubMed  CAS  Google Scholar 

  61. Sfanos KS, Sauvageot J, Fedor HL, Dick JD, De Marzo AM, Isaacs WB (2008) A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 68:306–320

    Article  PubMed  CAS  Google Scholar 

  62. Wang S, Mao Q, Lin Y et al (2012) Body mass index and risk of BPH: a meta-analysis. Prostate Cancer Prostatic Dis 15:265–272

    Article  PubMed  CAS  Google Scholar 

  63. Lotti F, Corona G, Colpi GM et al (2011) Elevated body mass index correlates with higher seminal plasma interleukin 8 levels and ultrasonographic abnormalities of the prostate in men attending an andrology clinic for infertility. J Endocrinol Invest 34:e336–e342

    PubMed  CAS  Google Scholar 

  64. Lotti F, Maggi M (2013) Interleukin 8 and the male genital tract. J Reprod Immunol doi:10.1016/j.jri.2013.02.004. (Epub ahead of print)

  65. Giovannucci E, Rimm EB, Liu Y et al (2003) Body mass index and risk of prostate cancer in U.S. health professionals. J Natl Cancer Inst 95:1240–1244

    Article  PubMed  Google Scholar 

  66. Parsons JK, Carter HB, Partin AW et al (2006) Metabolic factors associated with benign prostatic hyperplasia. J Clin Endocrinol Metab 91:2562–2568

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Rohrmann S, Smit E, Giovannucci E, Platz EA (2004) Associations of obesity with lower urinary tract symptoms and noncancer prostate surgery in the third National Health and Nutrition Examination Survey. Am J Epidemiol 159:390–397

    Article  PubMed  Google Scholar 

  68. Corona G, Rastrelli G, Morelli A, Vignozzi L, Mannucci E, Maggi M (2011) Hypogonadism and metabolic syndrome. J Endocrinol Invest 34:557–567

    Article  PubMed  CAS  Google Scholar 

  69. De Nunzio C, Aronson W, Freedland SJ, Giovannucci E, Parsons JK (2012) The correlation between metabolic syndrome and prostatic diseases. Eur Urol 61:560–570

    Article  PubMed  CAS  Google Scholar 

  70. Gacci M, Vignozzi L, Sebastianelli A et al (2013) Metabolic syndrome and lower urinary tract symptoms: the role of inflammation. Prostate Cancer Prostatic Dis 16:101–106

    Article  PubMed  CAS  Google Scholar 

  71. Lotti F, Corona G, Vignozzi L et al (2013) Metabolic syndrome and prostate abnormalities in male subjects of infertile couples. Asian J Androl (accepted)

  72. Filippi S, Vignozzi L, Morelli A et al (2009) Testosterone partially ameliorates metabolic profile and erectile responsiveness to PDE5 inhibitors in an animal model of male metabolic syndrome. J Sex Med 6:3274–3288

    Article  PubMed  CAS  Google Scholar 

  73. Morelli A, Comeglio P, Filippi S et al (2013) Mechanism of action of phosphodiesterase type 5 inhibition in metabolic syndrome-associated prostate alterations: an experimental study in the rabbit. Prostate 73:428–441

    Article  PubMed  CAS  Google Scholar 

  74. Vignozzi L, Gacci M, Cellai I et al (2013) PDE5 inhibitors blunt inflammation in human BPH: a potential mechanism of action for PDE5 inhibitors in LUTS. Prostate 73:1391–1402

    Article  PubMed  CAS  Google Scholar 

  75. Morelli A, Sarchielli E, Comeglio P et al (2013) Metabolic syndrome induces inflammation and impairs gonadotropin-releasing hormone neurons in the preoptic area of the hypothalamus in rabbits. Mol Cell Endocrinol doi:10.1016/j.mce.2013.09.017. (Epub ahead of print)

Download references

Conflict of interest

The authors declare that they have no conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Maggi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vignozzi, L., Rastrelli, G., Corona, G. et al. Benign prostatic hyperplasia: a new metabolic disease?. J Endocrinol Invest 37, 313–322 (2014). https://doi.org/10.1007/s40618-014-0051-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-014-0051-3

Keywords

Navigation