Skip to main content

Advertisement

Log in

Targeting oxidative stress and anti-oxidant defence in diabetic kidney disease

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

There is an unmet need for new strategies to prevent or postpone the development of diabetic kidney disease. The pathophysiology of this condition includes as a central mechanism an imbalance between the excessive production of reactive oxygen species (ROS) and inadequate anti-oxidant defense. Reduction of ROS is therefore an interesting therapeutic target that warrants further investigation. Herein, we review the drivers of oxidative stress in diabetic kidney disease including NADPH oxidases, mitochondrial ROS production, xanthine oxidase, cytochrome P450, uncoupled eNOS and lipoxygenase. Secondly, the role of anti-oxidative mechanisms in diabetic kidney disease is discussed including the role of the kelch-like ECH-associated protein 1- nuclear factor erythroid 2-related factor 2, lipoxin, oral anti-oxidants and glutathione peroxidase-1. We will also review data supporting the concept that the beneficial renal effects of anti-diabetic drugs that target the glucagon-like peptide 1 receptor and the sodium glucose transporter 2 are, at least in part, due to their impact on oxidative stress in diabetic kidney disease. In the present article we critically evaluate both preclinical studies with cell culture experiments and animal models of diabetic kidney disease as well as covering the current findings from clinical studies addressing targeted interventions towards these pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Groop PH, Thomas MC, Moran JL et al (2009) The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58(7):1651–1658. https://doi.org/10.2337/db08-1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. US Renal Data System (2019) Annual Data Report: epidemiology of kidney disease in the United States. Am J Kidney Dis. https://doi.org/10.1053/j.ajkd.2019.09.002

    Article  Google Scholar 

  3. Tsalamandris C, Allen TJ, Gilbert RE et al (1994) Progressive decline in renal function in diabetic patients with and without albuminuria. Diabetes 43(5):649–655. https://doi.org/10.2337/diab.43.5.649

    Article  CAS  PubMed  Google Scholar 

  4. Pugliese G, Penno G, Natali A et al (2020) Diabetic kidney disease: new clinical and therapeutic issues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on “The natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function”. J Nephrol 33(1):9–35. https://doi.org/10.1007/s40620-019-00650-x

    Article  PubMed  Google Scholar 

  5. Viazzi F, Russo GT, Ceriello A et al (2019) Natural history and risk factors for diabetic kidney disease in patients with T2D: lessons from the AMD-annals. J Nephrol 32(4):517–525. https://doi.org/10.1007/s40620-018-00561-3

    Article  CAS  PubMed  Google Scholar 

  6. Diabetes Control Complications Trial Research Group, Nathan DM, Genuth S et al (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329(14):977–986. https://doi.org/10.1056/NEJM199309303291401

    Article  Google Scholar 

  7. Ohkubo Y, Kishikawa H, Araki E et al (1995) Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 28(2):103–117. https://doi.org/10.1016/0168-8227(95)01064-k

    Article  CAS  PubMed  Google Scholar 

  8. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 329(20):1456–1462. https://doi.org/10.1056/NEJM199311113292004

    Article  CAS  PubMed  Google Scholar 

  9. Lewis EJ, Hunsicker LG, Clarke WR et al (2001) Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 345(12):851–860. https://doi.org/10.1056/NEJMoa011303

    Article  CAS  PubMed  Google Scholar 

  10. Jha JC, Banal C, Chow BS, Cooper ME, Jandeleit-Dahm K (2016) Diabetes and kidney disease: role of oxidative stress. Antioxid Redox Signal 25(12):657–684. https://doi.org/10.1089/ars.2016.6664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jha JC, Ho F, Dan C, Jandeleit-Dahm K (2018) A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes. Clin Sci (Lond) 132(16):1811–1836. https://doi.org/10.1042/CS20171459

    Article  CAS  Google Scholar 

  12. Gray SP, Di Marco E, Okabe J et al (2013) NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation 127(18):1888–1902. https://doi.org/10.1161/CIRCULATIONAHA.112.132159

    Article  CAS  PubMed  Google Scholar 

  13. Babelova A, Avaniadi D, Jung O et al (2012) Role of Nox4 in murine models of kidney disease. Free Radic Biol Med 53(4):842–853. https://doi.org/10.1016/j.freeradbiomed.2012.06.027

    Article  CAS  PubMed  Google Scholar 

  14. Jha JC, Gray SP, Barit D et al (2014) Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol 25(6):1237–1254. https://doi.org/10.1681/ASN.2013070810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jha JC, Thallas-Bonke V, Banal C et al (2016) Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy. Diabetologia 59(2):379–389. https://doi.org/10.1007/s00125-015-3796-0

    Article  CAS  PubMed  Google Scholar 

  16. Gorin Y, Cavaglieri RC, Khazim K et al (2015) Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am J Physiol Renal Physiol 308(11):F1276–1287. https://doi.org/10.1152/ajprenal.00396.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. You YH, Quach T, Saito R, Pham J, Sharma K (2016) Metabolomics reveals a key role for fumarate in mediating the effects of NADPH oxidase 4 in diabetic kidney disease. J Am Soc Nephrol 27(2):466–481. https://doi.org/10.1681/ASN.2015030302

    Article  CAS  PubMed  Google Scholar 

  18. Gray SP, Di Marco E, Kennedy K et al (2016) reactive oxygen species can provide atheroprotection via NOX4-dependent inhibition of inflammation and vascular remodeling. Arterioscler Thromb Vasc Biol 36(2):295–307. https://doi.org/10.1161/ATVBAHA.115.307012

    Article  CAS  PubMed  Google Scholar 

  19. Holterman CE, Thibodeau JF, Towaij C et al (2014) Nephropathy and elevated BP in mice with podocyte-specific NADPH oxidase 5 expression. J Am Soc Nephrol 25(4):784–797. https://doi.org/10.1681/ASN.2013040371

    Article  CAS  PubMed  Google Scholar 

  20. Jha JC, Dai A, Holterman CE et al (2019) Endothelial or vascular smooth muscle cell-specific expression of human NOX5 exacerbates renal inflammation, fibrosis and albuminuria in the Akita mouse. Diabetologia 62(9):1712–1726. https://doi.org/10.1007/s00125-019-4924-z

    Article  CAS  PubMed  Google Scholar 

  21. Jha JC, Banal C, Okabe J et al (2017) NADPH oxidase nox5 accelerates renal injury in diabetic nephropathy. Diabetes 66(10):2691–2703. https://doi.org/10.2337/db16-1585

    Article  CAS  PubMed  Google Scholar 

  22. Guzik TJ, Chen W, Gongora MC et al (2008) Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease. J Am Coll Cardiol 52(22):1803–1809. https://doi.org/10.1016/j.jacc.2008.07.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deliyanti D, Alrashdi SF, Touyz RM et al (2020) Nox (NADPH Oxidase) 1, Nox4, and Nox5 promote vascular permeability and neovascularization in retinopathy. Hypertension 75(4):1091–1101. https://doi.org/10.1161/HYPERTENSIONAHA.119.14100

    Article  CAS  PubMed  Google Scholar 

  24. Eid S, Hayes JM, Guo KAI et al (2018) NOX, NOX, Are you here? The emerging role of NOX5 in diabetic neuropathy. Diabetes 67(Supplement 1):30-LB. https://doi.org/10.2337/db18-30-LB

    Article  Google Scholar 

  25. Sedeek M, Gutsol A, Montezano AC et al (2013) Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of Type 2 diabetes. Clin Sci (Lond) 124(3):191–202. https://doi.org/10.1042/CS20120330

    Article  CAS  Google Scholar 

  26. Sedeek M, Callera G, Montezano A et al (2010) Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am J Physiol Renal Physiol 299(6):F1348–1358. https://doi.org/10.1152/ajprenal.00028.2010

    Article  CAS  PubMed  Google Scholar 

  27. Gray SP, Jha JC, Kennedy K et al (2017) Combined NOX1/4 inhibition with GKT137831 in mice provides dose-dependent reno- and atheroprotection even in established micro- and macrovascular disease. Diabetologia 60(5):927–937. https://doi.org/10.1007/s00125-017-4215-5

    Article  CAS  PubMed  Google Scholar 

  28. ten Freyhaus H, Huntgeburth M, Wingler K et al (2006) Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res 71(2):331–341. https://doi.org/10.1016/j.cardiores.2006.01.022

    Article  CAS  PubMed  Google Scholar 

  29. Cha JJ, Min HS, Kim KT et al (2017) APX-115, a first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db mice from renal injury. Lab Invest 97(4):419–431. https://doi.org/10.1038/labinvest.2017.2

    Article  CAS  PubMed  Google Scholar 

  30. Nishikawa T, Edelstein D, Du XL et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404(6779):787–790. https://doi.org/10.1038/35008121

    Article  CAS  PubMed  Google Scholar 

  31. Coughlan MT, Sharma K (2016) Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease. Kidney Int 90(2):272–279. https://doi.org/10.1016/j.kint.2016.02.043

    Article  CAS  PubMed  Google Scholar 

  32. Herlein JA, Fink BD, O’Malley Y, Sivitz WI (2009) Superoxide and respiratory coupling in mitochondria of insulin-deficient diabetic rats. Endocrinology 150(1):46–55. https://doi.org/10.1210/en.2008-0404

    Article  CAS  PubMed  Google Scholar 

  33. Coughlan MT, Nguyen TV, Penfold SA et al (2016) Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes. Clin Sci (Lond) 130(9):711–720. https://doi.org/10.1042/CS20150838

    Article  CAS  Google Scholar 

  34. Prabhakar SS (2004) Role of nitric oxide in diabetic nephropathy. Semin Nephrol 24(4):333–344. https://doi.org/10.1016/j.semnephrol.2004.04.005

    Article  CAS  PubMed  Google Scholar 

  35. Noiri E, Satoh H, Taguchi J et al (2002) Association of eNOS Glu298Asp polymorphism with end-stage renal disease. Hypertension 40(4):535–540. https://doi.org/10.1161/01.hyp.0000033974.57407.82

    Article  CAS  PubMed  Google Scholar 

  36. Zhao HJ, Wang S, Cheng H et al (2006) Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J Am Soc Nephrol 17(10):2664–2669. https://doi.org/10.1681/ASN.2006070798

    Article  CAS  PubMed  Google Scholar 

  37. Satoh M, Fujimoto S, Haruna Y et al (2005) NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. Am J Physiol Renal Physiol 288(6):F1144–1152. https://doi.org/10.1152/ajprenal.00221.2004

    Article  CAS  PubMed  Google Scholar 

  38. Wenzel P, Schulz E, Oelze M et al (2008) AT1-receptor blockade by telmisartan upregulates GTP-cyclohydrolase I and protects eNOS in diabetic rats. Free Radic Biol Med 45(5):619–626. https://doi.org/10.1016/j.freeradbiomed.2008.05.009

    Article  CAS  PubMed  Google Scholar 

  39. Wenzel P, Daiber A, Oelze M et al (2008) Mechanisms underlying recoupling of eNOS by HMG-CoA reductase inhibition in a rat model of streptozotocin-induced diabetes mellitus. Atherosclerosis 198(1):65–76. https://doi.org/10.1016/j.atherosclerosis.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  40. Hovind P, Rossing P, Tarnow L, Johnson RJ, Parving HH (2009) Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study. Diabetes 58(7):1668–1671. https://doi.org/10.2337/db09-0014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kosugi T, Nakayama T, Heinig M et al (2009) Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice. Am J Physiol Renal Physiol 297(2):F481–488. https://doi.org/10.1152/ajprenal.00092.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Komers R, Xu B, Schneider J, Oyama TT (2016) Effects of xanthine oxidase inhibition with febuxostat on the development of nephropathy in experimental type 2 diabetes. Br J Pharmacol 173(17):2573–2588. https://doi.org/10.1111/bph.13527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beddhu S, Filipowicz R, Wang B et al (2016) A randomized controlled trial of the effects of febuxostat therapy on adipokines and markers of kidney fibrosis in asymptomatic hyperuricemic patients with diabetic nephropathy. Can J Kidney Health Dis 3:2054358116675343. https://doi.org/10.1177/2054358116675343

    Article  PubMed  PubMed Central  Google Scholar 

  44. Doria A, Galecki A, Spino C, Mauer M (2019) Preventing early renal loss in diabetes (PERL) study: outcome of a 3-year trial of serum uric acid reduction with allopurinol. J Am Soc Nephrol (Kidney Week Abstract Supplement)

  45. Faulkner J, Pye C, Al-Shabrawey M, Elmarakby AA (2015) Inhibition of 12/15-lipoxygenase reduces renal inflammation and injury in streptozotocin-induced diabetic mice. J Diabetes Metab. https://doi.org/10.4172/2155-6156.1000555

    Article  PubMed  PubMed Central  Google Scholar 

  46. Eid AA, Gorin Y, Fagg BM et al (2009) Mechanisms of podocyte injury in diabetes: role of cytochrome P450 and NADPH oxidases. Diabetes 58(5):1201–1211. https://doi.org/10.2337/db08-1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brownlee M, Cerami A, Vlassara H (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318(20):1315–1321. https://doi.org/10.1056/NEJM198805193182007

    Article  CAS  PubMed  Google Scholar 

  48. Dimitropoulos A, Rosado CJ, Thomas MC (2020) Dicarbonyl-mediated AGEing and diabetic kidney disease. J Nephrol. https://doi.org/10.1007/s40620-020-00718-z

    Article  PubMed  Google Scholar 

  49. Monnier VM, Bautista O, Kenny D et al (1999) Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial. Diabetes 48(4):870–880. https://doi.org/10.2337/diabetes.48.4.870

    Article  CAS  PubMed  Google Scholar 

  50. Giardino I, Edelstein D, Brownlee M (1996) BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells. J Clin Invest 97(6):1422–1428. https://doi.org/10.1172/JCI118563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sima AV, Botez GM, Stancu CS, Manea A, Raicu M, Simionescu M (2010) Effect of irreversibly glycated LDL in human vascular smooth muscle cells: lipid loading, oxidative and inflammatory stress. J Cell Mol Med 14(12):2790–2802. https://doi.org/10.1111/j.1582-4934.2009.00933.x

    Article  CAS  PubMed  Google Scholar 

  52. Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL (2001) Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 280(5):E685–694. https://doi.org/10.1152/ajpendo.2001.280.5.E685

    Article  CAS  PubMed  Google Scholar 

  53. Flyvbjerg A, Denner L, Schrijvers BF et al (2004) Long-term renal effects of a neutralizing RAGE antibody in obese type 2 diabetic mice. Diabetes 53(1):166–172. https://doi.org/10.2337/diabetes.53.1.166

    Article  CAS  PubMed  Google Scholar 

  54. Degenhardt TP, Alderson NL, Arrington DD et al (2002) Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int 61(3):939–950. https://doi.org/10.1046/j.1523-1755.2002.00207.x

    Article  CAS  PubMed  Google Scholar 

  55. Lassila M, Seah KK, Allen TJ et al (2004) Accelerated nephropathy in diabetic apolipoprotein e-knockout mouse: role of advanced glycation end products. J Am Soc Nephrol 15(8):2125–2138. https://doi.org/10.1097/01.ASN.0000133025.23732.46

    Article  CAS  PubMed  Google Scholar 

  56. Watson AM, Gray SP, Jiaze L et al (2012) Alagebrium reduces glomerular fibrogenesis and inflammation beyond preventing RAGE activation in diabetic apolipoprotein E knockout mice. Diabetes 61(8):2105–2113. https://doi.org/10.2337/db11-1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lewis EJ, Greene T, Spitalewiz S et al (2012) Pyridorin in type 2 diabetic nephropathy. J Am Soc Nephrol 23(1):131–136. https://doi.org/10.1681/ASN.2011030272

    Article  CAS  PubMed  Google Scholar 

  58. Freedman BI, Wuerth JP, Cartwright K et al (1999) Design and baseline characteristics for the aminoguanidine clinical trial in overt type 2 diabetic nephropathy (ACTION II). Control Clin Trials 20(5):493–510. https://doi.org/10.1016/s0197-2456(99)00024-0

    Article  CAS  PubMed  Google Scholar 

  59. Pickering RJ, Tikellis C, Rosado CJ et al (2019) Transactivation of RAGE mediates angiotensin-induced inflammation and atherogenesis. J Clin Invest 129(1):406–421. https://doi.org/10.1172/JCI99987

    Article  PubMed  Google Scholar 

  60. Giugliano D, De Nicola L, Maiorino MI, Bellastella G, Esposito K (2019) Type 2 diabetes and the kidney: insights from cardiovascular outcome trials. Diabetes Obes Metab 21(8):1790–1800. https://doi.org/10.1111/dom.13743

    Article  PubMed  Google Scholar 

  61. Bethel MA, Mentz RJ, Merrill P et al (2018) Renal outcomes in the EXenatide study of cardiovascular event lowering (EXSCEL). Diabetes 67(Supplement 1):522-P. https://doi.org/10.2337/db18-522-P

    Article  Google Scholar 

  62. Mann JFE, Orsted DD, Brown-Frandsen K et al (2017) Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med 377(9):839–848. https://doi.org/10.1056/NEJMoa1616011

    Article  CAS  PubMed  Google Scholar 

  63. Muskiet MHA, Tonneijck L, Huang Y et al (2018) Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 6(11):859–869. https://doi.org/10.1016/S2213-8587(18)30268-7

    Article  CAS  PubMed  Google Scholar 

  64. Vilsbøll T, Gumprecht J, Silver RJ, Hansen T, Pettersson J, Wilding JP (2018) Semaglutide treatment and renal function in the SUSTAIN 6 trial. Diabetes 67(Supplement 1):1084-P. https://doi.org/10.2337/db18-1084-P

    Article  Google Scholar 

  65. Gerstein HC, Colhoun HM, Dagenais GR et al (2019) Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394(10193):121–130. https://doi.org/10.1016/S0140-6736(19)31149-3

    Article  CAS  PubMed  Google Scholar 

  66. Hernandez AF, Green JB, Janmohamed S et al (2018) Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392(10157):1519–1529. https://doi.org/10.1016/S0140-6736(18)32261-X

    Article  CAS  PubMed  Google Scholar 

  67. Fujita H, Morii T, Fujishima H et al (2014) The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney Int 85(3):579–589. https://doi.org/10.1038/ki.2013.427

    Article  CAS  PubMed  Google Scholar 

  68. Kodera R, Shikata K, Kataoka HU et al (2011) Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia 54(4):965–978. https://doi.org/10.1007/s00125-010-2028-x

    Article  CAS  PubMed  Google Scholar 

  69. Sourris KC, Yao H, Jerums G, Cooper ME, Ekinci EI, Coughlan MT (2016) Can targeting the incretin pathway dampen RAGE-mediated events in diabetic nephropathy? Curr Drug Targets 17(11):1252–1264. https://doi.org/10.2174/1389450116666150722141418

    Article  CAS  PubMed  Google Scholar 

  70. Wanner C, Inzucchi SE, Lachin JM et al (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375(4):323–334. https://doi.org/10.1056/NEJMoa1515920

    Article  CAS  PubMed  Google Scholar 

  71. Perkovic V, de Zeeuw D, Mahaffey KW et al (2018) Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol 6(9):691–704. https://doi.org/10.1016/S2213-8587(18)30141-4

    Article  CAS  PubMed  Google Scholar 

  72. Wiviott SD, Raz I, Bonaca MP et al (2019) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380(4):347–357. https://doi.org/10.1056/NEJMoa1812389

    Article  CAS  PubMed  Google Scholar 

  73. Perkovic V, Jardine MJ, Neal B et al (2019) Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. https://doi.org/10.1056/NEJMoa1811744

    Article  PubMed  Google Scholar 

  74. Cannon CP, Perkovic V, Agarwal R et al (2020) Evaluating the effects of canagliflozin on cardiovascular and renal events in patients with type 2 diabetes mellitus and chronic kidney disease according to baseline HbA1c, including those with HbA1c < 7%: results from the CREDENCE trial. Circulation 141(5):407–410. https://doi.org/10.1161/CIRCULATIONAHA.119.044359

    Article  PubMed  Google Scholar 

  75. Maeda S, Matsui T, Takeuchi M, Yamagishi S (2013) Sodium-glucose cotransporter 2-mediated oxidative stress augments advanced glycation end products-induced tubular cell apoptosis. Diabetes Metab Res Rev 29(5):406–412. https://doi.org/10.1002/dmrr.2407

    Article  CAS  PubMed  Google Scholar 

  76. Ishibashi Y, Matsui T, Yamagishi S (2016) Tofogliflozin, a highly selective inhibitor of SGLT2 blocks proinflammatory and proapoptotic effects of glucose overload on proximal tubular cells partly by suppressing oxidative stress generation. Horm Metab Res 48(3):191–195. https://doi.org/10.1055/s-0035-1555791

    Article  CAS  PubMed  Google Scholar 

  77. Leng W, Ouyang X, Lei X et al (2016) The SGLT-2 inhibitor dapagliflozin has a therapeutic effect on atherosclerosis in diabetic ApoE(-/-) mice. Mediators Inflamm 2016:6305735. https://doi.org/10.1155/2016/6305735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Maki T, Maeno S, Maeda Y et al (2019) Amelioration of diabetic nephropathy by SGLT2 inhibitors independent of its glucose-lowering effect: a possible role of SGLT2 in mesangial cells. Sci Rep 9(1):4703. https://doi.org/10.1038/s41598-019-41253-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yamamoto M, Kensler TW, Motohashi H (2018) The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev 98(3):1169–1203. https://doi.org/10.1152/physrev.00023.2017

    Article  CAS  PubMed  Google Scholar 

  80. Chan K, Han XD, Kan YW (2001) An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc Natl Acad Sci USA 98(8):4611–4616. https://doi.org/10.1073/pnas.081082098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kovac S, Angelova PR, Holmstrom KM, Zhang Y, Dinkova-Kostova AT, Abramov AY (2015) Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim Biophys Acta. https://doi.org/10.1016/j.bbagen.2014.11.021

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zheng H, Whitman SA, Wu W et al (2011) Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes 60(11):3055–3066. https://doi.org/10.2337/db11-0807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. de Zeeuw D, Akizawa T, Audhya P et al (2013) Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med 369(26):2492–2503. https://doi.org/10.1056/NEJMoa1306033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tan SM, Sharma A, Stefanovic N et al (2014) Derivative of bardoxolone methyl, dh404, in an inverse dose-dependent manner lessens diabetes-associated atherosclerosis and improves diabetic kidney disease. Diabetes 63(9):3091–3103. https://doi.org/10.2337/db13-1743

    Article  PubMed  Google Scholar 

  85. Yang S, Zheng Y, Hou X (2019) Lipoxin A4 restores oxidative stress-induced vascular endothelial cell injury and thrombosis-related factor expression by its receptor-mediated activation of Nrf2-HO-1 axis. Cell Signal 60:146–153. https://doi.org/10.1016/j.cellsig.2019.05.002

    Article  CAS  PubMed  Google Scholar 

  86. Brennan EP, Mohan M, McClelland A et al (2018) Lipoxins regulate the early growth response-1 network and reverse diabetic kidney disease. J Am Soc Nephrol 29(5):1437–1448. https://doi.org/10.1681/ASN.2017101112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. De Haan JB, Crack PJ, Flentjar N, Iannello RC, Hertzog PJ, Kola I (2003) An imbalance in antioxidant defense affects cellular function: the pathophysiological consequences of a reduction in antioxidant defense in the glutathione peroxidase-1 (Gpx1) knockout mouse. Redox Rep 8(2):69–79. https://doi.org/10.1179/135100003125001378

    Article  CAS  PubMed  Google Scholar 

  88. Tan SM, Sharma A, Stefanovic N, de Haan JB (2015) Late-intervention study with ebselen in an experimental model of type 1 diabetic nephropathy. Free Radic Res 49(3):219–227. https://doi.org/10.3109/10715762.2014.993628

    Article  CAS  PubMed  Google Scholar 

  89. Sourris KC, Harcourt BE, Tang PH et al (2012) Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetes. Free Radic Biol Med 52(3):716–723. https://doi.org/10.1016/j.freeradbiomed.2011.11.017

    Article  CAS  PubMed  Google Scholar 

  90. Bolignano D, Cernaro V, Gembillo G, Baggetta R, Buemi M, D’Arrigo G (2017) Antioxidant agents for delaying diabetic kidney disease progression: a systematic review and meta-analysis. PLoS One 12(6):e0178699. https://doi.org/10.1371/journal.pone.0178699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lonn E, Yusuf S, Hoogwerf B et al (2002) Effects of vitamin E on cardiovascular and microvascular outcomes in high-risk patients with diabetes: results of the HOPE study and MICRO-HOPE substudy. Diabetes Care 25(11):1919–1927. https://doi.org/10.2337/diacare.25.11.1919

    Article  CAS  PubMed  Google Scholar 

  92. Yang Y, Wang H, Kouadir M, Song H, Shi F (2019) Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 10(2):128. https://doi.org/10.1038/s41419-019-1413-8

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shahzad K, Bock F, Dong W et al (2015) Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int 87(1):74–84. https://doi.org/10.1038/ki.2014.271

    Article  CAS  PubMed  Google Scholar 

  94. Coll RC, Robertson AA, Chae JJ et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21(3):248–255. https://doi.org/10.1038/nm.3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang C, Zhu X, Li L et al (2019) A small molecule inhibitor MCC950 ameliorates kidney injury in diabetic nephropathy by inhibiting NLRP3 inflammasome activation. Diabetes Metab Syndr Obes 12:1297–1309. https://doi.org/10.2147/DMSO.S199802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jiang H, He H, Chen Y et al (2017) Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med 214(11):3219–3238. https://doi.org/10.1084/jem.20171419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Huang Y, Jiang H, Chen Y et al (2018) Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol Med. https://doi.org/10.15252/emmm.201708689

    Article  PubMed  PubMed Central  Google Scholar 

  98. Tan SM, Zhang Y, Cox AJ, Kelly DJ, Qi W (2011) Tranilast attenuates the up-regulation of thioredoxin-interacting protein and oxidative stress in an experimental model of diabetic nephropathy. Nephrol Dial Transp 26(1):100–110. https://doi.org/10.1093/ndt/gfq355

    Article  CAS  Google Scholar 

  99. Marchetti C, Swartzwelter B, Gamboni F et al (2018) OLT1177, a beta-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc Natl Acad Sci USA 115(7):E1530–E1539. https://doi.org/10.1073/pnas.1716095115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ridker PM, Everett BM, Thuren T et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131. https://doi.org/10.1056/NEJMoa1707914

    Article  CAS  PubMed  Google Scholar 

  101. Ridker PM, MacFadyen JG, Glynn RJ et al (2018) Inhibition of INterleukin-1beta by canakinumab and cardiovascular outcomes in patients with chronic kidney disease. J Am Coll Cardiol 71(21):2405–2414. https://doi.org/10.1016/j.jacc.2018.03.490

    Article  CAS  PubMed  Google Scholar 

  102. Reutens AT, Jandeleit-Dahm K, Thomas M et al (2019) A physician-initiated double-blind, randomised, placebo-controlled, phase 2 study evaluating the efficacy and safety of inhibition of NADPH oxidase with the first-in-class Nox-1/4 inhibitor, GKT137831, in adults with type 1 diabetes and persistently elevated urinary albumin excretion: protocol and statistical considerations. Contemp Clin Trials. https://doi.org/10.1016/j.cct.2019.105892

    Article  PubMed  Google Scholar 

  103. Bolton WK, Cattran DC, Williams ME et al (2004) Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol 24(1):32–40. https://doi.org/10.1159/000075627

    Article  CAS  PubMed  Google Scholar 

  104. Tavafi M (2013) Diabetic nephropathy and antioxidants. J Nephropathol 2(1):20–27. https://doi.org/10.5812/nephropathol.9093

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chew P, Yuen DY, Stefanovic N et al (2010) Antiatherosclerotic and renoprotective effects of ebselen in the diabetic apolipoprotein E/GPx1-double knockout mouse. Diabetes 59(12):3198–3207. https://doi.org/10.2337/db10-0195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Agnes Maria Jandeleit-Dahm.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest regarding the present article.

Ethical approval

Ethical approval for this review study was not required and includes no experiments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Østergaard, J.A., Cooper, M.E. & Jandeleit-Dahm, K.A.M. Targeting oxidative stress and anti-oxidant defence in diabetic kidney disease. J Nephrol 33, 917–929 (2020). https://doi.org/10.1007/s40620-020-00749-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-020-00749-6

Keywords

Navigation