Skip to main content
Log in

Changes in 2S albumin gene expression in Moringa oleifera under drought stress and expected allergenic reactivity in silico analysis

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

An experiment was conducted to explore the effect of water deficit on 2S albumin gene expression in Moringa oleifera with a predication of its allergenic reactivity. Drought was applied to 20-day-old plants for 1 month by limiting the irrigation water to half the control level. Soil water content and plant relative water content of drought treatment were about 50 and 70% of control values, respectively at the end of the stress period. Additionally, in relation to the control plants, drought reduced plant height (− 34%), leaf number (− 16%), total plant biomass (− 60%), shoot dry mass (− 37%) and root dry mass (− 21%). Conversely, root/shoot ratio was enhanced due to this stress. Quantitative polymerase chain reaction (qPCR) results revealed that drought enormously reduced 2S albumin gene expression in leaves and roots. Under control conditions, the relative albumin gene expression in roots was about half that of the leaves. Paratope and epitope prediction showed that albumin 31 which is a member of 2S albumin family, has eight cysteine residues and 25% of solvent-exposed regions. This makes albumin 31 a proposed target for food allergy investigations. Our interesting finding was that drought decreased 2S albumin expression in this species. This possibly will lower the allergenic reactivity and could enhance the feed value of M. oleifera for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amira S, Souad E, Essam D (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7:36–47

    Article  Google Scholar 

  • Anwar F, Zafar SN, Rashid U (2006) Characterization of Moringa oleifera seed oil from drought and irrigated regions of Punjab, Pakistan. Grasas Aceites 57:160–168

    CAS  Google Scholar 

  • Bakalova S, Nedeva D, Mckee J (2008) Protein profiles in wheat seedlings subjected to dehydration stress. Appl Ecol Environ Res 6:37–48

    Article  Google Scholar 

  • Busani M, Patrick JM, Arnold H, Voster M (2011) Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. African J Biotechnol 10:12925–12933

    Article  Google Scholar 

  • Chen GQ, He X, Liao LP et al (2004) 2S albumin gene expression in castor plant (Ricinus communis L.). JAOCS 81:867–872

    Article  CAS  Google Scholar 

  • Chen W, Yao X, Cai K, Chen J (2011) Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res 142:67–76

    Article  CAS  PubMed  Google Scholar 

  • Costa TG, Franco OL, Migliolo L, Dias SC (2015) Identification of a novel 2S albumin with antitryptic activity from Caryocar brasiliense seeds. J Agric Sci 7:197–206

    Google Scholar 

  • Des Marais DL, McKay JK, Richards JH et al (2012) Physiological genomics of response to soil drying in diverse Arabidopsis accessions. Plant Cell 24:893–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duca M, Bârsan A (2001) The modification of protein metabolism of sunflower plants under saline stress. Romanian Agrie Res 16:5–10

    Google Scholar 

  • Freire JEC, Vasconcelos IM, Moreno FBMB et al (2015) Mo-CBP3, an antifungal chitin-binding protein from Moringa oleifera seeds, is a member of the 2S albumin family. PLoS ONE 10:1–24

    Google Scholar 

  • Gupta S, Madhu MK, Sharma AK et al (2016) ProInflam: a webserver for the prediction of proinflammatory antigenicity of peptides and proteins. J Transl Med 14:178

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagiwara A, Hidaka M, Takeda S, Yoshida H, Kai H, Sugita C, Watanabe W, Kurokawa M (2016) Anti-allergic action of aqueous extract of Moringa oleifera Lam. leaves in mice. Eur J Med Plants 16:1–10

    Article  Google Scholar 

  • Ibrahim AH (2013) Tolerance and avoidance responses to salinity and water stresses in Calotropis procera and Suaeda aegyptiaca. Turkish J Agric For 37:352–360

    Google Scholar 

  • Ibrahim AH, Aldesuquy HS (2003) Glycine betaine and shikimic acid—induced modification in growth criteria, water relation and productivity of droughted Sorghum bicolor plants. Phyton (Horn, Austria) 43:351–363

    CAS  Google Scholar 

  • Krawczyk K, Baker T, Shi J et al (2013) Antibody i-Patch prediction of the antibody binding site improves rigid local antibody-antigen docking. Protein Eng Des Sel 26:621–629

    Article  CAS  PubMed  Google Scholar 

  • Krawczyk K, Liu X, Baker T et al (2014) Improving B-cell epitope prediction and its application to global antibody-antigen docking. Bioinformatics 30:2288–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudo M, Kidokoro S, Yoshida T et al (2017) Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol J 15:458–471

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, Chistyakov VV, Thornton JM (2005) PDBsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic acids Res 33(suppl_1):D266–D268

    CAS  PubMed  Google Scholar 

  • Lehmann K, Schweimer K, Reese G et al (2006) Structure and stability of 2S albumin-type peanut allergens: implications for the severity of peanut allergic reactions. Biochem J 395:463–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leprince O, Buitink J (2010) Desiccation tolerance: from genomics to the field. Plant Sci 179:554–564

    Article  CAS  Google Scholar 

  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maria D, Bârsan A (2001) The modification of protein metabolism of sunflower plants under saline stress. Rom Agric Res 16:5–14

    Google Scholar 

  • Merewitz EB, Gianfagna T, Huang B (2011) Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis. J Exp Bot 62:5311–5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno FJ, Clemente A (2008) 2S albumin storage proteins: what makes them food allergens? Open Biochem J 2:16–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muh HC, Tong JC, Tammi MT (2009) AllerHunter: a SVM-pairwise system for assessment of allergenicity and allergic cross-reactivity in proteins. PLoS ONE 4:2–6

    Article  Google Scholar 

  • Öztürk A, Taşkesenligil B, Haliloğlu K et al (2016) Evaluation of bread wheat genotypes for early drought resistance via germination under osmotic stress, cell membrane damage, and paraquat tolerance. Turk J Agric For 40:146–159

    Article  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Pinto CEM, Farias DF, Carvalho AFU et al (2015) Food safety assessment of an antifungal protein from Moringa oleifera seeds in an agricultural biotechnology perspective. Food Chem Toxicol 83:1–9

    Article  CAS  PubMed  Google Scholar 

  • Poussel M, Penven E, Richard C et al (2015) Occupational asthma to the miracle tree (Moringa oleifera): first description. J Allergy Clin Immunol Pract 3:813–814

    Article  PubMed  Google Scholar 

  • Ritchie DW, Venkatraman V (2010) Ultra-fast FFT protein docking on graphics processors. Bioinformatics 26:2398–2405

    Article  CAS  PubMed  Google Scholar 

  • Sapeta H, Costa JM, Lourenço T et al (2013) Drought stress response in Jatropha curcas: growth and physiology. Environ Exp Bot 85:76–84

    Article  CAS  Google Scholar 

  • Shewry PR, Pandya MJ (1999) The 2S albumin storage proteins. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic Publishers, Dordrecht, pp 563–586

    Chapter  Google Scholar 

  • Solomon A, Weiss DT (1995) Structural and functional properties of human lambda-light-chain variable-region subgroups. Clin Diagn Lab Immunol 2(4):387–394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira EM, Carvalho MR, Neves VA et al (2014) Chemical characteristics and fractionation of proteins from Moringa oleifera Lam leaves. Food Chem 147:51–54

    Article  CAS  PubMed  Google Scholar 

  • Tina KG, Bhadra R, Srinivasan N (2007) PIC: protein interactions calculator. Nucleic Acids Res 35(suppl_2):W473–W476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vangone A, Bonvin AMJJ (2015) Contacts-based prediction of binding affinity in protein–protein complexes. Elife 4:1–15

    Article  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Younis ME, El-Shahaby OA, Abo-Hamed SA, Ibrahim AH (2000) Effects of water stress on growth, pigments and 14CO2 assimilation in three sorghum cultivars. J Agron Crop Sci 185:62–71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ateeq Ahmed Al-Zahrani.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Zahrani, A.A., Ibrahim, A.H. Changes in 2S albumin gene expression in Moringa oleifera under drought stress and expected allergenic reactivity in silico analysis. Theor. Exp. Plant Physiol. 30, 19–27 (2018). https://doi.org/10.1007/s40626-018-0098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-018-0098-1

Keywords

Navigation