Skip to main content

Advertisement

Log in

Photosynthesis and water relations of peach palms (Bactris gasipaes Kunth) under soil water deficit

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

The Amazonian peach palm is presently the main species of heart-of- palm producer in many Brazilian regions. Here we evaluated the effects of soil water deficit and rewatering on leaf water potential (ψleaf), gas exchange and chlorophyll fluorescence emission in peach palms. Plants were grown in 80 L-plastic pots under greenhouse conditions. Water deficit was imposed by water withdrawing for 13 days, when irrigation was re-established for 8 days more. ψleaf was measured at 5:30 a.m. and 1:30 p.m. Gas exchange measurements were performed at 8:00 a.m. and at 2:00 p.m., after chlorophyll a fluorescence evaluations. The minimum ψleaf value observed at predawn was − 1.6 MPa, when net CO2 assimilation (PN) was zero on the 13th day of water deficit, thus showing mesophytes characteristics. The sharp PN decrease of 94%, 6 days after the beginning of treatments, demonstrated the drastic effect of the soil water deficit. After rewatering, a rapid recuperation of ψleaf was observed, whereas PN, transpiration rate (E) and stomatal conductance (gs) recovered more slowly, reaching values exhibited by the control plants only 7 days after rewatering. The lower maximal quantum yield of photosystem II (PSII) (FV/FM) values in the midday for plants under water deficit indicated dynamic photoinhibition of PS II to excessive PPFD. These results suggest a drought tolerance of peach palm plants, showing stomatal control of water losses and PN limitation, whereas the photosynthetic apparatus was maintained by photoprotection processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arruda FB, Tucci MLS, Bovi MLA, Pires RC (2002) Calibração da umidade do solo pela técnica de TDR em vasos cultivados com pupunheira. XII Congresso nacional de Irrigação e Drenagem, Uberlândia, Brazil, CDROM

    Google Scholar 

  • Ball MC, Butterworth JA, Roden JS, Christian R, Egerton FG (1994) Applications of chlorophyll fluorescence to forest ecology. J Plant Physiol 22:311–319

    Google Scholar 

  • Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photossystem II and of nonphotochemical quenching of chlorophyll fluorescence in the field. Oecologia 102:425–432

    Article  PubMed  Google Scholar 

  • Bovi MLA, Cantarella H (1996) Pupunha para extração de palmito. In: Raij B, Cantarella H, Quaggio JA, Furlani AMC (eds) Recomendações de adubação e calagem para o Estado de São Paulo. IAC. Boletim Técnico, Campinas, pp 240–242

    Google Scholar 

  • Bovi MLA, Spiering SH, Barbosa AMM (1999) Densidade radicular de progênies de pupunheira em função de adubação NPK. Hortic Bras 17:186–193

    Article  Google Scholar 

  • Buck AL (1981) New equations for computing vapor pressure and enhancement factor. J App. Meteorol 20:1527–1532

    Article  Google Scholar 

  • Calbo MER, Moraes JAPV (1997) Fotossíntese, condutância estomática, transpiração e ajustamento osmótico de plantas de buriti submetidas a estresse hídrico. Braz J Bot 9:117–123

    Google Scholar 

  • Calbo MER, Moraes JAPV (2000) Efeitos da deficiência de água em plantas de Euterpe Oleracea (açaí). Braz J Bot 23:225–230

    Article  Google Scholar 

  • Clement CR, Bovi MLA (2000) Padronização de medidas de crescimento e produção em experimentos com pupunheira para palmito. Acta Amazonica 30:349–362

    Article  Google Scholar 

  • Critchley C (1998) Photoinhibition. In: Raghavendra AS (ed) Photosynthesis: a comprehensive treatise. Cambridge University Press, Cambridge, pp 264–272

    Google Scholar 

  • Donovan LA, Linton MJ, Richards JH (2001) Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions. Oecologia 29:328–335

    Article  Google Scholar 

  • Dufrêne E, Saugier B (1993) Gas exchange of oil palm in relation to light, vapour pressure deficit, temperature and leaf age. Funct Ecol 7:97–104

    Article  Google Scholar 

  • Ferreira VLP, Graner M (1982) Palmito. Boletim do Instituto de Tecnologia de Alimentos 19:309–324

    CAS  Google Scholar 

  • Flexas J, Baró M, Bota J, Ducruet J, Gallé A, Galmés J, Jiménez M, Pou A, Ribas-Carbó M, Sajnani C, Tomàs M, Medrano H (2009) Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris). J Exp Bot 60:2361–2377. https://doi.org/10.1093/jxb/erp069

    Article  CAS  PubMed  Google Scholar 

  • Gomes FP, Prado CHBA (2007) Ecophysiology of coconut palm under water stress. Braz J Plant Physiol 19:377–391

    Article  CAS  Google Scholar 

  • Gomes FP, Oliva MA, Mielke MS, De Almeida A-AF, Leite HG, Aquino LA (2009) Is abscisic acid involved in the drought responses of Brazilian green dwarf coconut? Exp Agric 45:189–198

    Article  CAS  Google Scholar 

  • Gomes MMA, Lagoa AMMA, Medina CL, Machado EC, Machado MA (2004) Interactions between water potential stomatal conductance and abscisic acid content of orange trees submitted to drought stress. Braz J Plant Physiol 16:155

    Article  Google Scholar 

  • Instituto Brasileiro de Geografia e Estatística - IBGE. Produção Agrícola Municipal. http://www.sidra.ibge.gov.br. Accessed 18 October 2016

  • Larcher W (2000) A planta sob estresse. In: Larcher W (ed) Ecofisiologia Vegetal. RiMa, São Carlos, pp 341–378

    Google Scholar 

  • Machado EC, Schmidt PT, Medina CL, Ribeiro RV (2005) Photosynthetic responses of three citrus species to environmental factors. Pesq Agropec Bras 40:1161–1170

    Article  Google Scholar 

  • Medeiros MJ, Oliveira DS, Oliveira MT, Willadino L, Houllou L, Santos MG (2015) Ecophysiological, anatomical and biochemical aspects of in vitro culture of zygotic Syagrus coronata embryos and of young plants under drought stress. Trees 29:1219–1233. https://doi.org/10.1007/s00468-015-1202-7

    Article  CAS  Google Scholar 

  • Oliveira MAJ, Bovi MLA, Machado EC, Gomes MMA, Habermann G, Rodrigues JD (2002) Photosynthesis, stomatal conductance and transpiration in peach palm under water deficit. Sci Agr 59:59–63

    Article  Google Scholar 

  • Oliveira D, Medeiros M, Pereira S, Oliveira M, Frosi G, Arruda E, Santos M (2016) Ecophysiological leaf traits of native and exotic palm tree species under semi-arid conditions. Bragantia 75:128–134. https://doi.org/10.1590/1678-4499.364

    Article  Google Scholar 

  • Osmond CB (1994) What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis—from molecular mechanisms to the field. Sci. Publ, Lancaster, pp 1–24

    Google Scholar 

  • Pinheiro C, Chavez MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882. https://doi.org/10.1093/jxb/erq340

    Article  CAS  PubMed  Google Scholar 

  • Richter H (1997) Water relations of plants in the field: some comments on the measurement of selected parameters. J Exp Bot 48:1–7

    Article  CAS  Google Scholar 

  • São Paulo (Estado). Secretaria de Agricultura e Abastecimento. Coordenadoria de Assistência Técnica Integral. Instituto de Economia Agrícola. Levantamento censitário de unidades de produção agrícola do Estado de São Paulo—LUPA 2007/2008. São Paulo: SAA/CATI/IEA, 2008. http://www.cati.sp.gov.br/projetolupa. Accessed 05 April 2017

  • Suresh K, Nagamani C, Dl Kantha, Mk Kumar (2012) Changes in photosynthetic activity in five common hybrids of oil palm (Elaeis guineensis Jacq.) seedlings under water deficit. Photosynthetica 50:549–556. https://doi.org/10.1007/s11099-012-0062-2

    Article  CAS  Google Scholar 

  • Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49:419–432. https://doi.org/10.1093/jxb/49.Special_Issue.419

    Article  Google Scholar 

  • Tardieu F, Parent B, Simonneau T (2010) Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes? Plant Cell Environ 33:636–647

    Article  PubMed  Google Scholar 

  • Tomlinson PB (1990) The structural biology of palms. Clarendon Press, Oxford, p 463p

    Google Scholar 

  • Tucci MLS, Bovi MLA, Machado S, Spiering SH (2000) Stomatal frequency and size in leaves of pejibaye (Bactris gasipaes Kunth). Acta Hort 516:145–154

    Article  Google Scholar 

  • Tucci MLS, Bovi MLA, Machado EC, Spiering SH (2007) Seasonal variation in growth of peach palms cultivated in containers under subtropical conditions. Sci Agr 64:138–146

    Article  Google Scholar 

  • Tucci MLS, Erismann NM, Machado EC, Ribeiro RV (2010) Diurnal and seasonal variation in photosynthesis of peach palms grown under subtropical conditions. Photosynthetica 48:421–429

    Article  CAS  Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp, Brazil) for financial support (n° 00/02782-6). E.C. Machado acknowledges Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for a fellowship granted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma de Magalhães Erismann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tucci, M.L.S., Machado, E.C., Modolo, V.A. et al. Photosynthesis and water relations of peach palms (Bactris gasipaes Kunth) under soil water deficit. Theor. Exp. Plant Physiol. 30, 29–39 (2018). https://doi.org/10.1007/s40626-018-0099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-018-0099-0

Keywords

Navigation