Skip to main content
Log in

Leaf photosynthetic responses of passion fruit genotypes to varying sunlight exposure within the canopies

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

Passion fruit plants (Passiflora spp.) have very dense canopies so that leaves located at the top of them can shade the ones more internally located. This shade can change physiological and morphological leaf traits. Here we used gas exchange and chlorophyll a fluorescence parameters as tools to evaluate the responses of full sun-light exposed (FSE) leaves, leaves at intermediate position (IP) and shaded leaves (S) of three Passiflora genotypes [P. edulis f. flavicarpa (Maguary selection—FB 100) (M); P. giberti (G) and P. cincinnata (C)]. FSE leaves presented greater net photosynthetic rates (A net ), what accounted for increasing both intrinsic water use efficiency and water use efficiency. Otherwise, leaves grown and adapted to shade environments tended to always show low A net values, although such values were increased at 12:00, when light availability was improved. Leaves at IP and S leaves presented higher ratio of internal to ambient CO2 concentration (C i /C a ) likely due to reduced carboxylation efficiency. FSE leaves presented photoprotection mechanisms against high light intensities, while leaves under lower light intensities (IP and S) showed variable responses of chlorophyll a fluorescence, depending on the genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABS/CS 0 :

Absorption energy fluxes per excited cross-section

A net :

Net photosynthetic rates (\(\mu {\text{mol}}_{{{\text{CO}}_{ 2} }} \,{\text{m}}^{ - 2} \,{\text{s}}^{ - 1}\))

C :

Passiflora cincinnata

C i /C a :

Ratio of internal to ambient CO2 concentration

DI/CS 0 :

Dissipation energy flux at the level of the antenna chlorophylls per excited cross-section

E :

Transpiration rates (\({\text{mmol}}_{{{\text{H}}_{ 2} {\text{O}}}} \,{\text{m}}^{ - 2} \,{\text{s}}^{ - 1}\))

ET/CS 0 :

Flux of electrons from QA into the electron transport chain per excited cross-section

FSE :

Full sunlight exposure

F v /F 0 :

Contribution of the light reactions for primary photochemistry

F v /F m :

Ratio—maximum quantum yield of primary photochemistry

g s :

Stomatal conductance (\({\text{mol}}_{{{\text{H}}_{ 2} {\text{O}}}} \,{\text{m}}^{ - 2} \,{\text{s}}^{ - 1}\))

IP :

Intermediate position

iWUE :

Intrinsic water use efficiency

M :

Passiflora edulis f. flavicarpa (Maguary selection – FB 100)

P :

Passiflora giberti

PPFD :

Photosynthetic photon flux density (µmol m−2 s−1)

PSI :

Photosystem I

PSII :

Photosystem II

RC/CS 0 :

Fraction of active reaction centers per excited cross-section of leaf

S :

Shade

TR/CS 0 :

Excitation energy flux trapped by a reaction center (RC) and utilized for the reduction of QA to Q A per excited cross-section

VPD leaf-air :

Vapor pressure deficit between leaf and air (kPa)

WUE :

Water use efficiency

References

  • Abreu PP, Souza MM, Almeida AAF, Santos EA, Freitas JCO, Figueiredo AL (2014) Photosynthetic responses of ornamental passion flower hybrids to varying light intensities. Acta Physiol Plant 36(8):1993–2004

    Article  CAS  Google Scholar 

  • Acheampong K, Hadley P, Daymond AJ (2013) Photosynthetic activity and early growth of four cacao genotypes as influenced by different shade regimes under West African dry and wet season conditions. Exp Agr 49(01):31–42

    Article  Google Scholar 

  • Agrario I, Michele S (2002) Photosynthetic efficiency of grapevine (Vitis vinifera L. cv. Pinot noir) grown under different light conditions. Vitis 41(4):169–175

    Google Scholar 

  • Bailey S, Walters RG, Horton SJP (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213(5):794–801

    Article  PubMed  CAS  Google Scholar 

  • Bailey S, Horton P, Walters RG (2004) Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition. Planta 218(5):793–802

    Article  PubMed  CAS  Google Scholar 

  • Barth C, Krause GH, Winter K (2001) Responses of photosystem I compared with photosystem II to high-light stress in tropical shade and sun leaves. Plant Cell Environ 24(2):163–176

    Article  CAS  Google Scholar 

  • Craine JM, Reich PB (2005) Leaf-level light compensation points in shade-tolerant woody seedlings. New Phytol 166:705–708

    Article  Google Scholar 

  • Ehleringer JR, Cerling TE (1995) Atmospheric CO2 and the ratio of intercellular to ambient CO2 concentrations in plants. Tree Physiol 15(2):105–111

    Article  PubMed  CAS  Google Scholar 

  • Evans JR, Poorter H (2001) Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ 24:755–767

    Article  CAS  Google Scholar 

  • Everard JD, Gucci R, Kann SC, Flore JA, Loescher WH (1994) Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiol 106(1):281–292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Phys 33:317–345

    Article  CAS  Google Scholar 

  • Fini A, Loreto F, Tattini M, Giordano C, Ferrini F, Brunetti C, Cetritto M (2016) Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance. Physiol Plantarum 157(1):54–68

    Article  CAS  Google Scholar 

  • Glenn DM, Puterka GJ (2007) The use of plastic films and spray able particle films to increase light penetration in apple canopies and improve apple color and weight. HortScience 42:91–96

    Google Scholar 

  • Glenn DM, Erez E, Puterka GJ, Gundrum P (2003) Particle films affect carbon assimilation and yield in ‘Empire’ apple. J Am Soc Hortic Sci 128:356–362

    Google Scholar 

  • Griffin KL, Heskel M (2013) Breaking the cycle: how light, CO2 and O2 affect plant respiration. Plant Cell Environ 36:498–500

    Article  PubMed  CAS  Google Scholar 

  • Hanba YT, Kogami H, Terashima I (2002) The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand. Plant Cell Environ 25(8):1021–1030

    Article  Google Scholar 

  • Hikosaka K (2005) Nitrogen partitioning in the photosynthetic apparatus of Plantago asiatica leaves grown under different temperature and light conditions: similarities and differences between temperature and light acclimation. Plant Cell Physiol 46:1283–1290

    Article  PubMed  CAS  Google Scholar 

  • Kalaji HM, Carpentier R, Allakhverdiev SI, Bosa K (2012) Fluorescence parameters as early indicators of light stress in barley. J Photoch Photobio B 112:1–6

    Article  CAS  Google Scholar 

  • Long SP, Humphries P, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Phys 5:633–662

    Article  Google Scholar 

  • Mazzanatti T, Calzavara AK, Pimenta JA, Oliveira HC, Stolf-Moreira R, Bianchini E (2016) Light acclimation in nursery: morphoanatomy and ecophysiology of seedlings of three light-demanding neotropical tree species. Braz J Bot 39(1):19–28

    Article  Google Scholar 

  • Menzel CM, Simpson DR (1989) Effect of intermitten shading on growth, flowering and nutrient uptake of Passion fruit. Sci Hortic-Amst 41:83–96

    Article  Google Scholar 

  • Murillo-Amador B, Nieto-Garibay A, López-Aguilar R, Troyo-Diéguez E, Rueda-Puente EO, Flores-Hernández A, Ruiz-Espinoza FH (2013) Physiological, morphometric characteristics and yield of Origanum vulgare L. and Thymus vulgaris L. exposed to open-field and shade-enclosure. Ind Crops Prod 49:659–667

    Article  CAS  Google Scholar 

  • Perez Martinez LV, Melgarejo LM (2015) Photosynthetic performance and leaf water potential of gulupa (Passiflora edulis sims, passifloraceae) in the reproductive phase in three locations in the colombian andes. Acta Biol Colomb 20(1):183–194

    Article  CAS  Google Scholar 

  • Petrie PR, Trought MCT, Howell GS, Buchan GD, Palmer JW (2009) Whole-canopy gas exchange and light interception of vertically trained Vitis vinifera L. under direct and diffuse light. Am J Enol Viticult 60:173–182

    CAS  Google Scholar 

  • Pires MV, Almeida AF, Figueiredo AL, Gomes FP, Souza MM (2011) Photosynthetic characteristics of ornamental passion flowers grown under different light intensities. Photosynthetica 49(4):593–602

    Article  CAS  Google Scholar 

  • Shao R, Wang K, Shangguan Z (2010) Cytokinin-induced photosynthetic adaptability of Zea mays L. to drought stress associated with nitric oxide signal: probed by ESR spectroscopy and fast OJIP fluorescence rise. J Plant Physiol 167(6):472–479

    Article  PubMed  CAS  Google Scholar 

  • Shirke PA, Pathre UV (2004) Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. J Exp Bot 55(405):2111–2120

    Article  PubMed  CAS  Google Scholar 

  • Silva JR, Patterson AE, Rodrigues WP, Campostrini E, Griffin KL (2017) Photosynthetic acclimation to elevated CO2 combined with partial root zone drying results in improved water use efficiency, drought tolerance and leaf carbon balance of grapevines (Vitis labrusca). Environ Exp Bot 134:82–95

    Article  CAS  Google Scholar 

  • Silva JR, Rodrigues WP, Ferreira LS, Bernado WP, Paixão JS, Patterson AE, Ruas KF, Viana LH, Sousa EF, Bressan-Smith RH, Poni S, Griffin KL, Campostrini E (2018) Deficit irrigation and transparent plastic covers can save water and improve grapevine cultivation in the tropics. Agr Water Manage 202:66–80

    Article  Google Scholar 

  • Strasser BJ, Strasser RJ (1995) Measuring fast fluorescence transients to address environmental questions: The JIP-test. In: Mathis P (ed) Photosynthesis: from light to biosphere. Kluwer, Dordrecht, pp 977–980

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M (2001) Stress in plants, from daily rhythm to global changes, detected and quantified by the JIP-test. Chim Nouvelle SRC 75:3321–3326

    Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42

    Article  CAS  Google Scholar 

  • Strasser A, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and Adaptation. Taylor & Francis, London, pp 445–483

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 321–362

    Chapter  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. BBA-Bioenerg 1797:1313–1326

    Article  CAS  Google Scholar 

  • Tcherkez G, Bligny R, Gout E, Mahe A, Hodges M, Cornic G (2008) Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions. Proc Natl Acad Sci USA 105:797–802

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres-Olivar V, Valdez-Aguilar LA, Cárdenas-Flores A, Lira-Saldivar H, Hernández-Suárez M, Ibarra-Jiménez L (2016) Effect of colored plastic mulch on growth, yield and nutrient status in cucumber under shade house and open field conditions. J Plant Nut 39(14):2144–2152

    Article  CAS  Google Scholar 

  • Walters RG (2005) Towards an understanding of photosynthetic acclimation. J Ex Bot 56(411):435–447

    Article  CAS  Google Scholar 

  • Walters RG, Horton P (1994) Acclimation of Arabidopsis thaliana to the light environment: changes in composition of the photosynthetic apparatus. Planta 195(2):248–256

    Article  CAS  Google Scholar 

  • Zhang S, Ma K, Chen L (2003) Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environments. Environ Exp Bot 49(2):121–133

    Article  Google Scholar 

  • Zivcak M, Brestic M, Kalaji HM, Govindjee (2014) Photosynthetic responses of sun- and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light? Photosynth Res 119(3):339–354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES, Fundação Carlos Chagas de Apoio à Pesquisa do Estado do Rio de Janeiro (FAPERJ) for financial support and Conselho Nacional de Desenvolvimento Científico e Tecnológico (fellowship granted to E. Campostrini). The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliemar Campostrini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passos, L.C., da Silva, J.R., Rodrigues, W.P. et al. Leaf photosynthetic responses of passion fruit genotypes to varying sunlight exposure within the canopies. Theor. Exp. Plant Physiol. 30, 103–112 (2018). https://doi.org/10.1007/s40626-018-0106-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-018-0106-5

Keywords

Navigation