Skip to main content
Log in

Influence of light quality on leaf physiology of sweet pepper plants grown under drought

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

The application of artificial light to improve crop production in greenhouses is widely used in the horticultural sector. In this study, we evaluated the impact of light quality on sweet pepper plants’ physiology during a period of water deficit. Pepper plants were cultivated in a climate chamber and exposed to three different light regimes; (compact fluorescent lamps [CFL], continuous intensity from light emitting diodes [LED] [LEDcont] and bell-like shape illumination schedule from LEDs [LEDday]). The effect of temporary water shortage under these light treatments on plant height, chlorophyll and proline concentration, the maximum efficiency of photosystem II (Fv/Fm), the electron transport rate (ETR), and the non-photochemical quenching (NPQ), were studied. In general, plants exposed to CFL showed higher growth rates as compared to those exposed to LED under well-watered conditions. However, the lighting source did not induce significant effects on plant growth and chlorophyll concentration during water deficit, even though proline concentration was higher in plants exposed to CFL and to drought when compared to those exposed to LEDcont and LEDday. LED radiation led to a higher ETR and an early onset of NPQ under water deficit, suggesting an activation of the cyclic electron transport. As outcome, plants grown under LEDcont showed the highest photochemical performance. Overall, the results suggest that pepper plants grown under CFL radiation perform better, even under water deficit, possibly due to the more balanced light spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akoyunoglou G, Argyroudi-Akoyunoglou JH, Michel-Wolwertz MR, Sironval C (1966) Effect of intermittent and continuous light on chlorophyll formation in etiolated plants. Physiol Plant 1:1101–1104

    Article  Google Scholar 

  • Almansa EM, Chica RM, Planza BM, Lao-Arenas MT (2017) Proline test to evaluate light stress in tomato seedlings under artificial light. Acta Hortic 1170:1019–1026

    Article  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Balegh SE, Biddulph O (1970) The photosynthetic action spectrum of the bean plant. Plant Physiol 46:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhar-Nordenkampf HR, Long S, Lechner E (1989) Die Bestimmung der Photosynthesekapazität über Chlorophyllfluoreszez als Maß für die Streßbelastung von Bäumen. Phyton 29:119–135

    CAS  Google Scholar 

  • Brown CS, Schuerger AC, Sager JC (1995) Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J Am Soc Hortic Sci 120:808–813

    CAS  PubMed  Google Scholar 

  • Bürling K, Hunsche M, Noga G (2010) Quantum yield of non-regulated energy dissipation in PSII (Y(NO)) for early detection of leaf rust (Puccinia triticina) infection in susceptible and resistant wheat (Triticum aestivum L.) cultivars. Precision Agric 11:703–716

    Article  Google Scholar 

  • Buschmann C, Meier D, Kleudgen HK, Lichtenthaler HK (1978) Regulation of chloroplast developmemt by red and blue light. Photochem Photobil 27:195–198

    Article  CAS  Google Scholar 

  • Carvalho SD, Schwieterman ML, Abrahan CE, Colquhoun TA, Folta KM (2016) Light quality dependent changes in morphology, antioxidant capacity, and volatile production in sweet basil (Ocimum basilicum). Fron Plant Sci 7:1328

    Google Scholar 

  • Chow WS, Melis A, Anderson JM (1990) Adjustments of photosystem stoichiometry in chloroplast improve the quantum efficiency of photosynthesis. Proc Natl Acad Sci USA 87:7502–7506

    Article  CAS  PubMed  Google Scholar 

  • Cornic G, Ghashghaie J, Genty B, Briantais JM (1992) Leaf photosynthesis is resistant to a mild drought stress. Photosynthetica 26:295–308

    Google Scholar 

  • Darko E, Heydarizadeh P, Schoefs B, Sabzalian MR (2014) Photosynthesis under artifical light: the shift in primary and secondary metabolism. Philos Trans R Soc B 369:20130243

    Article  CAS  Google Scholar 

  • Dickson MH, Chua SE (1963) Effect of flashing light on plant growth rate. Nature (Lond) 198:305

    Article  Google Scholar 

  • Dietzel L, Bräutigam K, Pfannschmidt T (2008) Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry—functional relationships between short-term and long-term light quality acclimation in plants. FEBS J 275:1080–1088

    Article  CAS  PubMed  Google Scholar 

  • Dong C, Fu Y, Liu G, Liu H (2014) Growth, photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. J Agron Crop Sci 200:219–230

    Article  CAS  Google Scholar 

  • Grobbelaar JU, Nedbal L, Tichý V (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J Appl Phycol 8:335–343

    Article  CAS  Google Scholar 

  • Hasan M Md, Bashir T, Ghosh R, Lee SK, Hanhong Bae (2017) An overview of LEDs’ effects on the production of bioactive compounds and crop quality. Molecules 22(9):1420

    Article  CAS  PubMed Central  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann AM, Noga G, Hunsche M (2015a) Acclimations to light quality on plant and leaf level affect the vulnerability of pepper (Capsicum annuum L.) to water deficit. J Plant Res 128:295–306

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AM, Noga G, Hunsche M (2015b) High blue light improves acclimation and photosynthetic recovery of pepper plants exposed to UV stress. Environ Exp Bot 109:254–263

    Article  CAS  Google Scholar 

  • Hoffmann-Reh AM (2017) Influence of light quality on physiological responses of pepper (Capsicum annuum L.) and tomato (Solanum lycopersicum L.) as monitored by nondestructive sensors. Diss, University Bonn 2017

  • Hogewoning SW, Trouwborst G, Maljaars H, Poorter H, Van Ieperen W, Harbinson J (2010) Blue-light dose-response of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red an blue light. J Exp Bot 61:3107–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holden M (1976) Chlorophylls. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments, 2nd edn. Academic Press, London, pp 1–37

    Google Scholar 

  • Inada K (1976) Action spectra for photosynthesis in higher plants. Plant Cell Physiol 17:355–365

    Google Scholar 

  • Johnson GN (2011) Physiology of PSI cyclic electron transport in higher plants. BBA 1807:384–389

    CAS  PubMed  Google Scholar 

  • Kautz B, Noga G, Hunsche M (2014) Controlled long-term water deficiency and its impact on the fluorescence emission of tomato leaves during stress and re-watering. Eur. J. Hort. Sci. 79:60–69

    CAS  Google Scholar 

  • Kim HH, Golns GD, Wheeler RM, Sager JC (2004) Green-light supplementation for enhanced lettuce growth under red- and blue-ligt-emitting diodes. HortScience 39:1617–1622

    PubMed  Google Scholar 

  • Kishor KPB, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homoeostasis a more critical issue? Plant Cell Environ 37:300–311

    Article  CAS  Google Scholar 

  • Lichtentahler HK (1984) Differences in morphology and chemical composition of leaves grown at different light intensities and qualities. In: Baker NR, Davies WJ, Ong KC (eds) Control of leaf growth. Cambridge University Press, Cambridge, pp 201–222

    Google Scholar 

  • Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14

    Article  CAS  Google Scholar 

  • Lin KH, Huang MY, Huang WD, Hsu MH, Yang ZW (2013) The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci Hort 150:86–91

    Article  Google Scholar 

  • Massa GD, Kim HH, Wheeler RM, Mitchell CA (2008) Plant production in response to LED lighting. HortScience 43:1951–1956

    Google Scholar 

  • Menard C, Dorais M, Hovi T, Gosselin A (2006) Developmental and physiological responses of tomato and cucumber to additional blue light. Acta Hort 711:291–296

    Article  Google Scholar 

  • Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237

    Article  CAS  Google Scholar 

  • Rodyoung A, Masuda Y, Tomiyama H, Saito T, Okawa K, Ohara H, Kondo S (2016) Effects of light emitting diode irradiation at night on abscisic acid metabolism and anthocyanin synthesis in grapes in different growing seasons. Plant Growth Regul 79:39–46

    Article  CAS  Google Scholar 

  • Schuerger AC, Brown CS, Stryjewski EC (1997) Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Ann Bot 79:273–282

    Article  CAS  PubMed  Google Scholar 

  • Strobl A, Türk R (1990) Untersuchungen zum Chlorophyllgehalt einiger subalpiner Flechtenarten. Phyton Ann Rei Bot A 30:247–264

    CAS  Google Scholar 

  • Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50:684–697

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Makino A, Shikanai T (2016) A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Sci Rep 6:20147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh N, Chung J-P (2009) High-brightness LEDs—energy efficient lighting sources and their potential in indoor plant cultivation. Renew Sustain Energy Rev 13:2175–2180

    Article  CAS  Google Scholar 

  • Zhang G, Shen S, Takagaki M, Kozai T, Yamori W (2015) Supplemental upward lighting from underneath to obtain higher marketable lettuce (Lactuca sativa) leaf fresh weight by retarding senescence of outer leaves. Front Plant Sci 6:1008–1016

    Google Scholar 

  • Zheng L, Van Labeke MC (2017) Chrysanthemum morphology, photosynthetic efficiency and antioxidant capacity are differentially modified by light quality. J Plant Physiol 213:66–74

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Marius Rütt and Knut Wichterich for their support in conducting the practical experiments in the climate chamber, Ira Kurth for her support with lab analysis, and Anna M. Hoffmann for valuable advices concerning light adjustments and non-destructive fluorescence analysis. Acknowledgements are extended to Ushio Europe B.V. (The Netherlands) and the group of technical engineers from Ushio Lighting Inc. (Japan) for developing and making the LED panels available for this study. We also acknowledge the constructive criticism of the anonymous reviewers during the evaluation phase of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Klein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, S., Fiebig, A., Noga, G. et al. Influence of light quality on leaf physiology of sweet pepper plants grown under drought. Theor. Exp. Plant Physiol. 30, 287–296 (2018). https://doi.org/10.1007/s40626-018-0122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-018-0122-5

Keywords

Navigation