Skip to main content
Log in

An Erratum to this article was published on 12 July 2017

This article has been updated

Abstract

In recent years, additive manufacturing, also known as three-dimensional (3D) printing, has emerged as an environmentally friendly green manufacturing technology which brings great benefits, such as energy saving, less material consumption, and efficient production. These advantages are attributed to the successive material deposition at designated target areas by delivering the energy on it. In this regard, lasers are the most effective energy source in additive manufacturing since the laser beam can transfer a large amount of energy into micro-scale focal region instantaneously to solidify or cure materials in air, therefore enabling high-precision and high-throughput manufacturing for a wide range of materials. In this paper, we introduce laser-based additive manufacturing methods and review the types of lasers widely used in 3D printing machines. Important laser parameters relevant to additive manufacturing will be analyzed and general guidelines for selecting suitable lasers for additive manufacturing will be provided. Discussion on future prospects of laser technologies for additive manufacturing will be finally covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 12 July 2017

    The figure 15 in page 315 should be modified as below:

References

  1. Yoon, H.-S., Lee, J.-Y., Kim, H.-S., Kim, M.-S., Kim, E.-S., et al., “A Comparison of Energy Consumption in Bulk Forming, Subtractive, and Additive Processes: Review and Case Study,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 3, pp. 261–279, 2014.

    Article  Google Scholar 

  2. Ahn, S.-H., Chun, D.-M., and Chu, W.-S., “Perspective to Green Manufacturing and Applications,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 6, pp. 873–874, 2013.

    Article  Google Scholar 

  3. Moon, S. K., Tan, Y. E., Hwang, J., and Yoon, Y.-J., “Application of 3D Printing Technology for Designing Light-Weight Unmanned Aerial Vehicle Wing Structures,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 3, pp. 223–228, 2014.

    Article  Google Scholar 

  4. Ko, H., Moon, S. K., and Hwang, J., “Design for Additive Manufacturing in Customized Products,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2369–2375, 2015.

    Article  Google Scholar 

  5. Khare, V., Ruby, C., Sonkaria, S., and Taubert, A., “A Green and Sustainable Nanotechnology: Role of Ionic Liquids,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 7, pp. 1207–1213, 2012.

    Article  Google Scholar 

  6. Shan, Z., Qin, S., Liu, Q., and Liu, F., “Key Manufacturing Technology & Equipment for Energy Saving and Emissions Reduction in Mechanical Equipment Industry,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 7, pp. 1095–1100, 2012.

    Article  Google Scholar 

  7. Ahn, S.-H., “An Evaluation of Green Manufacturing Technologies Based on Research Databases,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 5–9, 2014.

    Article  Google Scholar 

  8. Lee, G., Sul, S.-K., and Kim, J., “Energy-Saving Method of Parallel Mechanism by Redundant Actuation,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 4, pp. 345–351, 2015.

    Article  Google Scholar 

  9. Huang, S. H., Liu, P., Mokasdar, A., and Hou, L., “Additive Manufacturing and Its Societal Impact: A Literature Review,” The International Journal of Advanced Manufacturing Technology, pp. 1–13, 2013.

    Google Scholar 

  10. Yoo, D.-J., “Recent Trends and Challenges in Computer-Aided Design of Additive Manufacturing-Based Biomimetic Scaffolds and Bioartificial Organs,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 10, pp. 2205–2217, 2014.

    Article  Google Scholar 

  11. Yoon, H.-S., Kim, M.-S., Jang, K.-H., and Ahn, S.-H., “Future Perspectives of Sustainable Manufacturing and Applications Based on Research Databases,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 9, pp. 1249–1263, 2016.

    Article  Google Scholar 

  12. Chu, W.-S., Kim, M.-S., Jang, K.-H., Song, J.-H., Rodrigue, H., et al., “From Design for Manufacturing (DFM) to Manufacturing for Design (MFD) Via Hybrid Manufacturing and Smart Factory: A Review and Perspective of Paradigm Shift,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 2, pp. 209–222, 2016.

    Article  Google Scholar 

  13. Gibson, I., Rosen, D. W., and Stucker, B., “Development of Additive Manufacturing Technology,” in: Additive Manufacturing Technologies, Gibson, I., Rosen, D. W., and Stucker, B., (Eds.), Springer, pp. 19–42, 2010.

    Chapter  Google Scholar 

  14. EY, “EY’s Global 3D Printing Report 2016 Executive Summary-How will 3D Printing Make your Company the Strongest Link in the Value Chain?” http://www.ey.com/Publication/vwLUAssets/eyglobal-3D-printing-report-2016-full-report/$FILE/ey-global-3D-printing-report-2016-full-report.pdf (Accessed 8 JUN 2017)

    Google Scholar 

  15. Strategies Unlimited, “The Worldwide Market for Lasers: Market Review and Forecast 2016,” http://store.strategies-u.com/theworldwide-market-for-lasers-market-review-and-forecast-2016/ (Accessed 8 JUN 2017)

    Google Scholar 

  16. Belforte, D., “2015 Industrial Laser Market Outperforms Global Manufacturing Instability,” http://www.industrial-lasers.com/articles/print/volume-31/issue-1/features/2015-industrial-laser-market-outper forms-global-manufacturing-instability.html (Accessed 8 JUN 2017)

    Google Scholar 

  17. Markets, “3D Printing Metal Market by Form (Powder and Filament), by Type (Titanium, Nickel, Stainless Steel, Aluminum, Others), by Application (Aerospace & Defense, Automotive, Medical & Dental, Others), and by Region-Global Forecast to 2020,” Report Code: CH4171, 2016.

    Google Scholar 

  18. Ahn, D.-G., “Applications of Laser Assisted Metal Rapid Tooling Process to Manufacture of Molding & Forming Tools-State of the Art,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 5, pp. 925–938, 2011.

    Article  Google Scholar 

  19. Cristofolini, I., Pilla, M., Rao, A., Libardi, S., and Molinari, A., “Dimensional and Geometrical Precision of Powder Metallurgy Parts Sintered and Sinterhardened at High Temperature,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 10, pp. 1735–1742, 2013.

    Article  Google Scholar 

  20. Lee, H.-J., Song, J.-G., and Ahn, D.-G., “Investigation into the Influence of Feeding Parameters on the Formation of the Fed-Powder Layer in a Powder Bed Fusion (PBF) System,” Int. J. Precis. Eng. Manuf., Vol. 18, No. 4, pp. 613–621, 2017.

    Article  Google Scholar 

  21. Sun, S., Brandt, M., and Easton, M., “Powder Bed Fusion Processes: An Overview,” in: Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, Brandt, M., (Ed.), Woodhead Publishing, pp. 55–77, 2016.

    Google Scholar 

  22. Mahamood, R. M. and Akinlabi, E. T., “Laser Additive Manufacturing,” in: Advanced Manufacturing Techniques Using Laser Material Processing, Esther, A., Mahamood, T., Akinlabi, R. M., and Akinwale, S., (Eds.), IGI Global, Chap. 1, pp. 1–23, 2016.

    Google Scholar 

  23. Wohlers, T., “Wohlers Report 2013: Additive Manufacturing and 3D Printing, State of the Industry–Annual Worldwide Progress Report, Wohlers Associates,” Wohler’s Associates Inc., Fort Collins, CO., 2013.

    Google Scholar 

  24. Wohlers, T., “Wohlers Report 2014: 3D Printing and Additive Manufacturing State of the Industry; Wohlers Associates,” Wohler’s Associates Inc., Fort Collins, CO., 2014.

    Google Scholar 

  25. Majumdar, J. D. and Manna, I., “Laser-Assisted Fabrication of Materials,” Springer Science & Business Media, 2012.

    Google Scholar 

  26. Patel, C. K. N., “Continuous-Wave Laser Action on Vibrational-Rotational Transitions of CO2,” Physical Review, Vol. 136, No. 5A, pp. A1187–A1193, 1964.

    Article  Google Scholar 

  27. Witteman, W. J., “Continuous Discharge Lasers,” in: The CO2 Laser, Witteman, W. J., (Ed.), Springer, pp. 81–126, 1987.

    Chapter  Google Scholar 

  28. Bass, M., “Laser Materials Processing,” Elsevier, pp. 1–14, 2012.

    Google Scholar 

  29. Witteman, W. J., “Intrduction,” in: The CO2 Laser, Witteman, W. J., (Ed.), Springer, pp. 1–7, 2013.

    Google Scholar 

  30. Tredicce, J., Quel, E., Ghazzawi, A., Green, C., Pernigo, M., et al., “Spatial and Temporal Instabilities in a CO2 Laser,” Physical Review Letters, Vol. 62, No. 11, pp. 1274–1277, 1989.

    Article  Google Scholar 

  31. Nighan, W. L., Wiegand, W. J., and Haas, R. A., “Ionization Instability in CO2 Laser Discharges,” Applied Physics Letters, Vol. 22, No. 11, pp. 579–582, 1973.

    Article  Google Scholar 

  32. Digonnet, M., Gaeta, C., and Shaw, H., “1.064-and 1.32-μm Nd: YAG Single Crystal Fiber Lasers,” Journal of Lightwave Technology, Vol. 4, No. 4, pp. 454–460, 1986.

    Article  Google Scholar 

  33. Farças, I. I., “Development of Laser Material Processing in Romania,” in: Laser Applications for Mechanical Industry, Martellucci, S., Chester, A. N., and Scheggi, A. M., (Eds.), Springer, pp. 283–290, 1993.

    Chapter  Google Scholar 

  34. Geusic, J. E., Marcos, H. M., and Van Uitert, L., “Laser Oscillations in Nd-Doped Yttrium Aluminum, Yttrium Gallium and Gadolinium Garnets,” Applied Physics Letters, Vol. 4, No. 10, pp. 182–184, 1964.

    Article  Google Scholar 

  35. Weber, R., Neuenschwander, B., and Weber, H., “Thermal Effects in Solid-State Laser Materials,” Optical Materials, Vol. 11, No. 2, pp. 245–254, 1999.

    Article  Google Scholar 

  36. Berger, J., Hoffman, N. J., Smith, J. J., Welch, D. F., Streifer, W., et al., “Fiber-Bundle Coupled, Diode End-Pumped Nd: YAG Laser,” Optics Letters, Vol. 13, No. 4, pp. 306–308, 1988.

    Article  Google Scholar 

  37. Zhou, B., Kane, T. J., Dixon, G. J., and Byer, R. L., “Efficient, Frequency-Stable Laser-Diode-Pumped Nd: YAG Laser,” Optics Letters, Vol. 10, No. 2, pp. 62–64, 1985.

    Article  Google Scholar 

  38. Hügel, H., “New Solid-State Lasers and their Application Potentials,” Optics and Lasers in Engineering, Vol. 34, No. 4, pp. 213–229, 2000.

    Article  Google Scholar 

  39. Kruth, J.-P., Kumar, S., and Van Vaerenbergh, J., “Study of Laser-Sinterability of Ferro-Based Powders,” Rapid Prototyping Journal, Vol. 11, No. 5, pp. 287–292, 2005.

    Article  Google Scholar 

  40. Mumtaz, K. and Hopkinson, N., “Selective Laser Melting of Inconel 625 Using Pulse Shaping,” Rapid Prototyping Journal, Vol. 16, No. 4, pp. 248–257, 2010.

    Article  Google Scholar 

  41. Kobryn, P. A. and Semiatin, S. L., “The Laser Additive Manufacture of Ti-6al-4v,” JOM Journal of the Minerals, Metals and Materials Society, Vol. 53, No. 9, pp. 40–42, 2001.

    Article  Google Scholar 

  42. Liao, H.-T. and Shie, J.-R., “Optimization on Selective Laser Sintering of Metallic Powder Via Design of Experiments Method,” Rapid Prototyping Journal, Vol. 13, No. 3, pp. 156–162, 2007.

    Article  Google Scholar 

  43. Balla, V. K., Bose, S., and Bandyopadhyay, A., “Processing of Bulk Alumina Ceramics Using Laser Engineered Net Shaping,” International Journal of Applied Ceramic Technology, Vol. 5, No. 3, pp. 234–242, 2008.

    Article  Google Scholar 

  44. Garg, A., Lam, J. S. L., and Savalani, M. M., “Laser Power Based Surface Characteristics Models for 3-D Printing Process,” Journal of Intelligent Manufacturing, DOI: 10.1007/s10845-015-1167-9, 2015.

    Google Scholar 

  45. Minassian, A., Thompson, B., and Damzen, M., “Ultrahigh-Efficiency TEM00 Diode-Side-Pumped Nd: YVO4 Laser,” Applied Physics B, Vol. 76, No. 4, pp. 341–343, 2003.

    Article  Google Scholar 

  46. Fields, R., Birnbaum, M., and Fincher, C., “Highly Efficient Nd: YVO4 Diode-Laser End-Pumped Laser,” Applied Physics Letters, Vol. 51, No. 23, pp. 1885–1886, 1987.

    Article  Google Scholar 

  47. Humphreys, H. and Wimpenny, D., “Comparison of Laser-Based Rapid Prototyping Techniques,” Proc. of 7th International Conference on Laser and Laser Information Technologies, Vol. 4644, pp. 407–413, 2002.

    Article  Google Scholar 

  48. Huang, B. W., Weng, Z. X., and Sun, W., “Study on the Properties of DSM SOMOS 11120 Type Photosensitive Resin for Stereolithography Materials,” Advanced Materials Research, Vols. 233-235, pp. 194–197, 2011.

    Article  Google Scholar 

  49. Huang, B. W. and Chen, M. Y., “Evaluation on Some Properties of SL7560 Type Photosensitive Resin and its Fabricated Parts,” Applied Mechanics and Materials, Vols. 117-119, pp. 1164–1167, 2012.

    Article  Google Scholar 

  50. Dutta, N. K., “Fiber Amplifiers and Fiber Lasers,” World Scientific, 2014.

    Book  Google Scholar 

  51. Brignon, A., “Coherent Laser Beam Combining,” John Wiley & Sons, 2013.

    Book  Google Scholar 

  52. Méndez, A. and Morse, T. F., “Specialty Optical Fibers Handbook,” Academic Press, 2011.

    Google Scholar 

  53. Orlan, H., “Marking with Fiber Lasers,” http://www.industriallasers. com/articles/print/volume-19/issue-5/features/marking-with-fiber-lasers.html (Accessed 23 JUN 2017)

    Google Scholar 

  54. Verhaeghe, G. and Hilton, P., “Battles of the Sources-Using a High-Power Yb-Fibre Laser for Welding Steel and Aluminium,” Proc. of the 3rd International WLT-Conference in Manufacturing, pp. 33–38, 2005.

    Google Scholar 

  55. Gu, G., Kong, F., Hawkins, T., Parsons, J., Jones, M., et al., “Ytterbium-Doped Large-Mode-Area All-Solid Photonic Bandgap Fiber Lasers,” Optics Express, Vol. 22, No. 11, pp. 13962–13968, 2014.

    Article  Google Scholar 

  56. Gu, G., Kong, F., Hawkins, T. W., Foy, P., Wei, K., et al., “Impact of Fiber Outer Boundaries on Leaky Mode Losses in Leakage Channel Fibers,” Optics Express, Vol. 21, No. 20, pp. 24039–24048, 2013.

    Article  Google Scholar 

  57. Kong, F., Gu, G., Hawkins, T. W., Parsons, J., Jones, M., et al., “Flat-Top Mode from a 50 μm-Core Yb-Doped Leakage Channel Fiber,” Optics Express, Vol. 21, No. 26, pp. 32371–32376, 2013.

    Article  Google Scholar 

  58. Limpert, J., Schreiber, T., Nolte, S., Zellmer, H., Tünnermann, A., et al., “High-Power Air-Clad Large-Mode-Area Photonic Crystal Fiber Laser,” Optics Express, Vol. 11, No. 7, pp. 818–823, 2003.

    Article  Google Scholar 

  59. Sezerman, O. and Best, G., “Accurate Alignment Preserves Polarization,” Laser Focus World, Vol. 33, No. 12, pp. S27–S30, 1997.

    Google Scholar 

  60. Basting, D., Pippert, K. D., and Stamm, U., “History and Future Prospects of Excimer Lasers,” Proc. of 2nd International Symposium on Laser Precision Micromachining, Vol. 4426, pp. 25–34, 2002.

    Article  Google Scholar 

  61. Mann, K. R. and Eva, E., “Characterizing the Absorption and Aging Behavior of DUV Optical Material by High-Resolution Excimer Laser Calorimetry,” Proc. of 23rd Annual International Symposium on Microlithography, Vol. 3334, pp. 1055–1061, 1998.

    Article  Google Scholar 

  62. Jaber, H., Binder, A., and Ashkenasi, D., “High-Efficiency Microstructuring of VUV Window Materials by Laser-Induced Plasma-Assisted Ablation (LIPAA) with a KRF Excimer Laser,” Proc. of the International Society for Optics and Photonics of Lasers and Applications in Science and Engineering, pp. 557–567, 2004.

    Google Scholar 

  63. Morozov, N. V., “Laser-Induced Damage in Optical Materials Under UV Excimer Laser Radiation,” Proc. of the International Society for Optics and Phtoics, pp. 153–169, 1995.

    Google Scholar 

  64. Wang, X., Shao, J., Li, H., Nie, J., and Fang, X., “Analysis of Damage Threshold of K9 Glass Irradiated by 248-nm KrF Excimer Laser,” Optical Engineering, Vol. 55, No. 2, Paper No. 027102, 2016.

    Google Scholar 

  65. Lee, K. and Lee, C., “Comparison of ITO Ablation Characteristics Using KrF Excimer Laser and Nd: YAG Laser,” Proc. of the International Society for Optics and Photonics in 2ed International Symposium on Laser Precision Micromachining, pp. 260–263, 2002.

    Google Scholar 

  66. Atezhev, V. V., Vartapetov, S. K., Zhukov, A. N., Kurzanov, M. A., and Obidin, A. Z., “Excimer Laser with Highly Coherent Radiation,” Quantum Electronics, Vol. 33, No. 8, pp. 689–694, 2003.

    Article  Google Scholar 

  67. Toenshoff, H. K., Ostendorf, A., Koerber, K., and Meyer, K., “Comparison of Machining Strategies for Ceramics Using Frequency-Converted Nd: YAG and Excimer Lasers,” Proc. of the International Society for Optics and Photonics in 2nd International Symposium on Laser Precision Micromachining, pp. 408–411, 2002.

    Google Scholar 

  68. Tolochko, N. K., Khlopkov, Y. V., Mozzharov, S. E., Ignatiev, M. B., Laoui, T., et al., “Absorptance of Powder Materials Suitable for Laser Sintering,” Rapid Prototyping Journal, Vol. 6, No. 3, pp. 155–161, 2000.

    Article  Google Scholar 

  69. Olakanmi, E. O., Cochrane, R., and Dalgarno, K., “A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties,” Progress in Materials Science, Vol. 74, pp. 401–477, 2015.

    Article  Google Scholar 

  70. Lazov, L. and Angelov, N., “Physical Model about Laser Impact on Metals and Alloys,” Contemporary Materials, Vol. 1, p. 2, 2010.

    Google Scholar 

  71. Ion, J., “Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application,” Butterworth-Heinemann, 2005.

    Google Scholar 

  72. Frazier, W. E., “Metal Additive Manufacturing: A Review,” Journal of Materials Engineering and Performance, Vol. 23, No. 6, pp. 1917–1928, 2014.

    Article  Google Scholar 

  73. Gu, D., Meiners, W., Wissenbach, K., and Poprawe, R., “Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms,” International Materials Reviews, Vol. 57, No. 3, pp. 133–164, 2012.

    Article  Google Scholar 

  74. Garban-Labaune, C., Fabre, E., Max, C., Fabbro, R., Amiranoff, F., et al., “Effect of Laser Wavelength and Pulse Duration on Laser-Light Absorption and Back Reflection,” Physical Review Letters, Vol. 48, No. 15, p. 1018, 1982.

    Article  Google Scholar 

  75. Hoffman, J., Chrzanowska, J., Kucharski, S., Moscicki, T., Mihailescu, I., et al., “The Effect of Laser Wavelength on the Ablation Rate of Carbon,” Applied Physics A, Vol. 117, No. 1, pp. 395–400, 2014.

    Article  Google Scholar 

  76. Sing, S. L., Yeong, W. Y., Wiria, F. E., Tay, B. Y., Zhao, Z., et al., “Direct Selective Laser Sintering and Melting of Ceramics: A Review,” Rapid Prototyping Journal, Vol. 23, No. 3, pp. 26–36, 2017.

    Article  Google Scholar 

  77. Born, M. and Wolf, E., “Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light,” Elsevier, 2013.

    MATH  Google Scholar 

  78. Regenfuss, P., Streek, A., Hartwig, L., Klötzer, S., Brabant, T., et al., “Principles of Laser Micro Sintering,” Rapid Prototyping Journal, Vol. 13, No. 4, pp. 204–212, 2007.

    Article  Google Scholar 

  79. Chung Ng, C., Savalani, M., and Chung Man, H., “Fabrication of Magnesium Using Selective Laser Melting Technique,” Rapid Prototyping Journal, Vol. 17, No. 6, pp. 479–490, 2011.

    Article  Google Scholar 

  80. Sahasrabudhe, H. and Bandyopadhyay, A., “Additive Manufacturing of Reactive in Situ Zr Based Ultra-High Temperature Ceramic Composites,” JOM Journal of the Minerals, Metals and Materials Society, Vol. 68, No. 3, pp. 822–830, 2016.

    Article  Google Scholar 

  81. Ke, L., Zhu, H., Yin, J., and Wang, X., “Effects of Peak Laser Power on Laser Micro Sintering of Nickel Powder by Pulsed Nd: YAG Laser,” Rapid Prototyping Journal, Vol. 20, No. 4, pp. 328–335, 2014.

    Article  Google Scholar 

  82. Agarwala, M., Bourell, D., Beaman, J., Marcus, H., and Barlow, J., “Direct Selective Laser Sintering of Metals,” Rapid Prototyping Journal, Vol. 1, No. 1, pp. 26–36, 1995.

    Article  Google Scholar 

  83. Mumtaz, K. and Hopkinson, N., “Top Surface and Side Roughness of Inconel 625 Parts Processed Using Selective Laser Melting,” Rapid Prototyping Journal, Vol. 15, No. 2, pp. 96–103, 2009.

    Article  Google Scholar 

  84. Paschotta, R., “M2 Factor,” https://www.rp-photonics.com/m2_factor.html (Accessed 13 JUN 2017)

    Google Scholar 

  85. Monzón, M., Ortega, Z., Martínez, A., and Ortega, F., “Standardization in Additive Manufacturing: Activities Carried Out by International Organizations and Projects,” The International Journal of Advanced Manufacturing Technology, Vol. 76, Nos. 5-8, pp. 1111–1121, 2015.

    Article  Google Scholar 

  86. Hull, C. W., “Apparatus for Production of Three-Dimensional Objects by Stereolithography,” US Patent, 4575330, 1986.

    Google Scholar 

  87. Wang, J.-C., “A Novel Fabrication Method of High Strength Alumina Ceramic Parts Based on Solvent-Based Slurry Stereolithography and Sintering,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 3, pp. 485–491, 2013.

    Article  Google Scholar 

  88. Sim, J.-H., Lee, E.-D., and Kweon, H.-J., “Effect of the Laser Beam Size on the Cure Properties of a Photopolymer in Stereolithography,” Int. J. Precis. Eng. Manuf., Vol. 8, No. 4, pp. 50–55, 2007.

    Google Scholar 

  89. Vehse, M. and Seitz, H., “A New Micro-Stereolithography-System Based on Diode Laser Curing (DLC),” Int. J. Precis. Eng. Manuf., Vol. 15, No. 10, pp. 2161–2166, 2014.

    Article  Google Scholar 

  90. Corbel, S., Dufaud, O., and Roques-Carmes, T., “Materials for Stereolithography,” in Stereolithography, Bártolo, P. J., (Ed.), Springer, pp. 141–159, 2011.

    Chapter  Google Scholar 

  91. Lalevée, J., Blanchard, N., Tehfe, M.-A., Peter, M., Morlet-Savary, F., et al., “Efficient Dual Radical/Cationic Photoinitiator Under Visible Light: A New Concept,” Polymer Chemistry, Vol. 2, No. 9, pp. 1986–1991, 2011.

    Article  Google Scholar 

  92. Decker, C., “Kinetic Study of Light-Induced Polymerization by Real Time UV and IR Spectroscopy,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 30, No. 5, pp. 913–928, 1992.

    Article  Google Scholar 

  93. Ligon-Auer, S. C., Schwentenwein, M., Gorsche, C., Stampfl, J., and Liska, R., “Toughening of Photo-Curable Polymer Networks: A Review,” Polymer Chemistry, Vol. 7, No. 2, pp. 257–286, 2016.

    Article  Google Scholar 

  94. Levy, G. N., Schindel, R., and Kruth, J.-P., “Rapid Manufacturing and Rapid Tooling with Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives,” CIRP Annals-Manufacturing Technology, Vol. 52, No. 2, pp. 589–609, 2003.

    Article  Google Scholar 

  95. Partanen, J., “Solid State Lasers for Stereolithography”, Proc. of the 7th Annual Solid Freeform Fabrication Symposium, pp. 369–376, 1996.

    Google Scholar 

  96. Jacobs, P. F., “Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography,” Society of Manufacturing Engineers, 1992.

    Google Scholar 

  97. Yi, C., Dichen, L., and Jing, W., “Using Variable Beam Spot Scanning to Improve the Efficiency of Stereolithography Process,” Rapid Prototyping Journal, Vol. 19, No. 2, pp. 100–110, 2013.

    Article  Google Scholar 

  98. Scarparo, M. A., Munhoz, A. L., Marinho, G., Salles, D. S., and Allen, S. D., “New Infrared Stereolithography: Control of the Parameters of the Localized Curing Thermosensitive Materials,” Proc. of the International Society for Optics and Photonics in Symposium on High-Power Lasers and Applications, pp. 396–403, 2000.

    Google Scholar 

  99. Jardini, A., Maciel, R., Scarparo, M. A., Andrade, S. R., and Moura, L., “Improvement of the Spatial Resolution of Prototypes Using Infrared Laser Stereolithography on Thermosensitive Resins,” Journal of Materials Processing Technology, Vol. 172, No. 1, pp. 104–109, 2006.

    Article  Google Scholar 

  100. Jardini, A., Maciel, R., Scarparo, M., Andrade, S., and Moura, L., “Advances in Stereolithography: A New Experimental Technique in the Production of a Three-Dimensional Plastic Model with an Infrared Laser,” Journal of Applied Polymer Science, Vol. 92, No. 4, pp. 2387–2394, 2004.

    Article  Google Scholar 

  101. Jardini, A. L., Filho, R. M., Scarparo, M. A., Andrade, S. R., and Moura, L., “Infrared Laser Stereolithography: Prototype Construction Using Special Combination of Compounds and Laser Parameters in Localised Curing Process,” International Journal of Materials and Product Technology, Vol. 21, No. 4, pp. 241–254, 2004.

    Article  Google Scholar 

  102. Lee, I. H. and Cho, D.-W., “Micro-Stereolithography Photopolymer Solidification Patterns for Various Laser Beam Exposure Conditions,” The International Journal of Advanced Manufacturing Technology, Vol. 22, Nos. 5-6, pp. 410–416, 2003.

    Article  Google Scholar 

  103. Stampfl, J., Baudis, S., Heller, C., Liska, R., Neumeister, A., et al., “Photopolymers with Tunable Mechanical Properties Processed by Laser-Based High-Resolution Stereolithography,” Journal of Micromechanics and Microengineering, Vol. 18, No. 12, Paper No. 125014, 2008.

    Google Scholar 

  104. Zheng, X., Deotte, J., Alonso, M. P., Farquar, G. R., Weisgraber, T. H., et al., “Design and Optimization of a Light-Emitting Diode Projection Micro-Stereolithography Three-Dimensional Manufacturing System,” Review of Scientific Instruments, Vol. 83, No. 12, Paper No. 125001, 2012.

    Google Scholar 

  105. Baldacchini, T., “Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications,” William Andrew, 2015.

    Google Scholar 

  106. Beaman, J. J. and Deckard, C. R., “Selective Laser Sintering with Assisted Powder Handling,” US Patent, 4938816, 1990.

    Google Scholar 

  107. Kruth, J.-P., Wang, X., Laoui, T., and Froyen, L., “Lasers and Materials in Selective Laser Sintering,” Assembly Automation, Vol. 23, No. 4, pp. 357–371, 2003.

    Article  Google Scholar 

  108. Liu, F.-H., Shen, Y.-K., and Lee, J.-L., “Selective Laser Sintering of a Hydroxyapatite-Silica Scaffold on Cultured MG63 Osteoblasts in Vitro,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 3, pp. 439–444, 2012.

    Article  Google Scholar 

  109. Lee, P.-H., Chang, E., Yu, S., Lee, S. W., Kim, I. W., et al., “Modification and Characteristics of Biodegradable Polymer Suitable for Selective Laser Sintering,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 6, pp. 1079–1086, 2013.

    Article  Google Scholar 

  110. Eshraghi, S., Karevan, M., Kalaitzidou, K., and Das, S., “Processing and Properties of Electrically Conductive Nanocomposites Based on Polyamide-12 Filled with Exfoliated Graphite Nanoplatelets Prepared by Selective Laser Sintering,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 11, pp. 1947–1951, 2013.

    Article  Google Scholar 

  111. Lee, Y.-L., Jeong, S.-T., and Park, S.-J., “Study on Manufacturing of Recycled SiC Powder from Solar Wafering Sludge and its Application,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 4, pp. 299–304, 2014.

    Article  Google Scholar 

  112. O'neill, W., Sutcliffe, C., Morgan, R., Landsborough, A., and Hon, K., “Investigation on Multi-Layer Direct Metal Laser Sintering of 316L Stainless Steel Powder Beds,” CIRP Annals-Manufacturing Technology, Vol. 48, No. 1, pp. 151–154, 1999.

    Article  Google Scholar 

  113. Ho, H., Gibson, I., and Cheung, W., “Effects of Energy Density on Morphology and Properties of Selective Laser Sintered Polycarbonate,” Journal of Materials Processing Technology, Vol. 89, pp. 204–210, 1999.

    Article  Google Scholar 

  114. Kruth, J.-P., Van Der Schueren, B., Bonse, J., and Morren, B., “Basic Powder Metallurgical Aspects in Selective Metal Powder Sintering,” CIRP Annals-Manufacturing Technology, Vol. 45, No. 1, pp. 183–186, 1996.

    Article  Google Scholar 

  115. Heo, J., Min, H., and Lee, M., “Laser Micromachining of Permalloy for Fine Metal Mask,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 3, pp. 225–230, 2015.

    Article  Google Scholar 

  116. Glardon, R., Karapatis, N., Romano, V., and Levy, G., “Influence of Nd: YAG Parameters on the Selective Laser Sintering of Metallic Powders,” CIRP Annals-Manufacturing Technology, Vol. 50, No. 1, pp. 133–136, 2001.

    Article  Google Scholar 

  117. Kumar, S., “Selective Laser Sintering: A Qualitative and Objective Approach,” JOM Journal of the Minerals, Metals and Materials Society, Vol. 55, No. 10, pp. 43–47, 2003.

    Article  Google Scholar 

  118. Van Der Schueren, B. and Kruth, J.-P., “Powder Deposition in Selective Metal Powder Sintering,” Rapid Prototyping Journal, Vol. 1, No. 3, pp. 23–31, 1995.

    Article  Google Scholar 

  119. Khaing, M., Fuh, J., and Lu, L., “Direct Metal Laser Sintering for Rapid Tooling: Processing and Characterisation of EOS Parts,” Journal of Materials Processing Technology, Vol. 113, No. 1, pp. 269–272, 2001.

    Article  Google Scholar 

  120. Nelson, J. C., “Selective Laser Sintering: A Definition of the Process and an Empirical Sintering Model,” UMI, 1993.

    Google Scholar 

  121. Williams, J. D. and Deckard, C. R., “Advances in Modeling the Effects of Selected Parameters on the SLS Process,” Rapid Prototyping Journal, Vol. 4, No. 2, pp. 90–100, 1998.

    Article  Google Scholar 

  122. Meiners, W., Wissenbach, K., and Gasser, A., “Shaped Body Especially Prototype or Replacement Part Production,” DE Patent, 19649865 C1, 1998.

    Google Scholar 

  123. Kruth, J.-P., Vandenbroucke, B., Vaerenbergh, V. J., and Mercelis, P., “Benchmarking of Different SLS/SLM Processes as Rapid Manufacturing Techniques,” 2005.

    Google Scholar 

  124. Gibson, I., Rosen, D. W., and Stucker, B., “Additive Manufacturing Technologies,” Springer, 2010.

    Book  Google Scholar 

  125. Crafer, R. and Oakley, P. J., “Laser Processing in Manufacturing,” Springer Science & Business Media, 1992.

    Google Scholar 

  126. Kruth, J.-P., Mercelis, P., Van Vaerenbergh, J., Froyen, L., and Rombouts, M., “Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting,” Rapid Prototyping Journal, Vol. 11, No. 1, pp. 26–36, 2005.

    Article  Google Scholar 

  127. Dashchenko, A. I., “Manufacturing Technologies for Machines of the Future: 21st Century Technologies,” Springer Science & Business Media, 2012.

    Google Scholar 

  128. Abe, F., Osakada, K., Shiomi, M., Uematsu, K., and Matsumoto, M., “The Manufacturing of Hard Tools from Metallic Powders by Selective Laser Melting,” Journal of Materials Processing Technology, Vol. 111, No. 1, pp. 210–213, 2001.

    Article  Google Scholar 

  129. Ahn, D.-G., “Direct Metal Additive Manufacturing Processes and their Sustainable Applications for Green Technology: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 4, pp. 381–395, 2016.

    Article  Google Scholar 

  130. Khademzadeh, S., Parvin, N., and Bariani, P. F., “Production of NiTi Alloy by Direct Metal Deposition of Mechanically Alloyed Powder Mixtures,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2333–2338, 2015.

    Article  Google Scholar 

  131. Hensinger, D. M., Ames, A. L., and Kuhlmann, J., “Motion Planning for a Direct Metal Deposition Rapid Prototyping System,” Proc. of the IEEE International Conference on Robotics and Automation, pp. 3095–3100, 2000.

    Google Scholar 

  132. Dwivedi, R. and Kovacevic, R., “Process Planning for Multi-Directional Laser-Based Direct Metal Deposition,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 219, No. 7, pp. 695–707, 2005.

    Google Scholar 

  133. Bai, S., Yang, L., and Liu, J., “Manipulation of Microstructure in Laser Additive Manufacturing,” Applied Physics A, Vol. 122, No. 5, pp. 1–5, 2016.

    Google Scholar 

  134. Nie, B., Huang, H., Bai, S., and Liu, J., “Femtosecond Laser Melting and Resolidifying of High-Temperature Powder Materials,” Applied Physics A, Vol. 118, No. 1, pp. 37–41, 2015.

    Article  Google Scholar 

  135. Cheng, C. and Chen, J., “Femtosecond Laser Sintering of Copper Nanoparticles,” Applied Physics A, Vol. 122, No. 4, pp. 1–8, 2016.

    Article  MathSciNet  Google Scholar 

  136. Chung, I.-Y., Kim, J.-D., and Kang, K.-H., “Ablation Drilling of Invar Alloy Using Ultrashort Pulsed Laser,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 2, pp. 11–16, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Lim, C.H.J., Low, M.J. et al. Lasers in additive manufacturing: A review. Int. J. of Precis. Eng. and Manuf.-Green Tech. 4, 307–322 (2017). https://doi.org/10.1007/s40684-017-0037-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-017-0037-7

Keywords

Navigation