Skip to main content
Log in

Modelling and Validation of Electret-Based Vibration Energy Harvesters in View of Charge Migration

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

One of the key problems of electret-based vibration energy harvester (eVEH) modelling is that the surface voltage itself cannot precisely reveal the charge storage characteristics of the electret fabricated by different processes. In this paper, we endeavor to interpret the charge migration mechanism of the eVEH with electrets fabricated by different processes. Based on the above analysis, a unified analytical model of the eVEH is derived accordingly. The dynamic response and voltage output predicted by this model are verified numerically by the equivalent circuit simulation and experimentally with an out-of-plane eVEH prototype. According to the analysis, the maximum power output is approximately 255 μW when the prototype works at its resonance frequency and the vibration amplitude is 1 mm. This paper elucidates the working principle of the eVEH and provides a framework for further theoretical study of eVEHs from the first principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim, H. S., Kim, J.-H., & Kim, J. (2011). A review of piezoelectric energy harvesting based on vibration. International Journal of Precision Engineering and Manufacturing, 12(6), 1129–1141.

    Article  Google Scholar 

  2. Jung, B. C., & Yoon, H. (2019). Double acting compression mechanism (DACM) for piezoelectric vibration energy harvesting in 33-mode operation. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 681–690.

    Article  Google Scholar 

  3. Park, H., & Kim, J. (2016). Electromagnetic induction energy harvester for high-speed railroad applications. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 41–48.

    Article  Google Scholar 

  4. Kim, S.-C., Kim, J.-G., Kim, Y.-C., Yang, S.-J., & Lee, H. (2019). A study of electromagnetic vibration energy harvesters: Design optimization and experimental validation. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 779–788.

    Article  Google Scholar 

  5. Basset, P., Galayko, D., Paracha, A. M., Marty, F., Dudka, A., & Bourouina, T. (2009). A batch-fabricated and electret-free silicon electrostatic vibration energy harvester. Journal of Micromechanics and Microengineering, 19(11), 115025.

    Article  Google Scholar 

  6. Basset, P., Galayko, D., Cottone, F., Guillemet, R., Blokhina, E., Marty, F., et al. (2014). Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact. Journal of Micromechanics and Microengineering, 24(3), 035001.

    Article  Google Scholar 

  7. Tao, K., Yi, H., Tang, L., Wu, J., Wang, P., Wang, N., et al. (2018). Piezoelectric ZnO thin films for 2DOF MEMS vibrational energy harvesting. Surface & Coatings Technology, 359, 289–295.

    Article  Google Scholar 

  8. Wang, F., & Hansen, O. (2014). Electrostatic energy harvesting device with out-of-the-plane gap closing scheme. Sensors and Actuators, A: Physical, 211, 131–137.

    Article  Google Scholar 

  9. Yang, Z., Tang, L., Tao, K., & Aw, K. (2019). A broadband electret-based vibrational energy harvester using soft magneto-sensitive elastomer with asymmetrical frequency response profile. Smart Materials and Structures, 28(10), 10LT02.

    Article  Google Scholar 

  10. Jefimenko, O. D., & Walker, D. K. (1978). Electrostatic current generator having a disk electret as an active element. IEEE Transactions on Industry Applications, IA-14(6), 537–540.

    Article  Google Scholar 

  11. Tada, Y. (1986). Theoretical characteristics of generalized electret generator, using POlymer Film Electrets. IEEE Transactions on Electrical Insulation, EI-21(3), 457–464.

    Article  Google Scholar 

  12. Tada, Y. (1993). Improvement of conventional electret motors. IEEE Transactions on Electrical Insulation, 28(3), 402–410.

    Article  Google Scholar 

  13. Boland, J., Yuan-Heng, C., Suzuki, Y., & Tai, Y. C. (2003). Micro electret power generator. In The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto, 1923 Jan, 2003. (pp. 538–541)

  14. Sterken, T., Baert, K., Puers, R., Borghs, G., & Mertens, R. (2003). A new power MEMS component with variable capacitance. In Mircoelectronics Symposium and Exhibition, 2003: Surface Mount Technology Association. pp. 27–34

  15. Asanuma, H., Hara, M., Oguchi, H., & Kuwano, H. (2015). Air gap optimization for output power and band width in out-of-plane vibration energy harvesters employing electrets. Journal of Micromechanics and Microengineering, 25(10), 104013.

    Article  Google Scholar 

  16. Tao, K., Tang, L., Wu, J., Lye, S. W., Chang, H., & Miao, J. (2018). Investigation of multimodal electret-based MEMS energy harvester with impact-induced nonlinearity. Journal of Microelectromechanical Systems, 27(2), 276–288.

    Article  Google Scholar 

  17. Tvedt, L. G. W., Blystad, L.-C. J., & Halvorsen, E. (2008). Simulation of an electrostatic energy harvester at large amplitude narrow and wide band vibrations. In Design, Test, Integration and Packaging of MEMS/MOEMS, 2008. MEMS/MOEMS 2008. Symposium on, 2008 (pp. 296–301): IEEE

  18. Westby, E. R., & Halvorsen, E. (2012). Design and modeling of a patterned-electret-based energy harvester for tire pressure monitoring systems. IEEE/ASME Transactions on Mechatronics, 17(5), 995–1005.

    Article  Google Scholar 

  19. Tao, K., Wu, J., Tang, L., Hu, L., Lye, S. W., & Miao, J. (2017). Enhanced electrostatic vibrational energy harvesting using integrated opposite-charged electrets. Journal of Micromechanics and Microengineering, 27(4), 044002.

    Article  Google Scholar 

  20. Boisseau, S., Despesse, G., Ricart, T., Defay, E., & Sylvestre, A. (2011). Cantilever-based electret energy harvesters. Smart Materials and Structures, 20(10), 105013.

    Article  Google Scholar 

  21. Gao, C., Gao, S., Liu, H., Jin, L., & Lu, J. (2017). Electret length optimization of output power for double-end fixed beam out-of-plane electret-based vibration energy harvesters. Energies, 10(8), 1122.

    Article  Google Scholar 

  22. Tao, K., Lye, S. W., Miao, J., Tang, L., & Hu, X. (2015). Out-of-plane electret-based MEMS energy harvester with the combined nonlinear effect from electrostatic force and a mechanical elastic stopper. Journal of Micromechanics and Microengineering, 25(10), 104014.

    Article  Google Scholar 

  23. Boisseau, S., Despesse, G., & Seddik, B. A. (2012). Electrostatic conversion for vibration energy harvesting. arXiv:1210.5191.

  24. Gao, C., Gao, S., Liu, H., Jin, L., Lu, J., & Li, P. (2017). Optimization for output power and band width in out-of-plane vibration energy harvesters employing electrets theoretically, numerically and experimentally. Microsystem Technologies, 23(12), 5759–5769.

    Article  Google Scholar 

  25. Feng, Y., Yu, Z., & Han, Y. (2018). High-performance gap-closing vibrational energy harvesting using electret-polarized dielectric oscillators. Applied Physics Letters, 112(3), 032901.

    Article  Google Scholar 

  26. Salam, M. A. (2014). Electric Currents. Electromagnetic Field Theories for Engineering (pp. 117–139). Singapore: Springer Singapore.

    Google Scholar 

  27. Rosser, W. G. V. (2013). Classical electromagnetism via relativity: An alternative approach to Maxwell’s equations. New York: Springer.

    Google Scholar 

  28. Bu, L., Wu, X., Wang, X., & Liu, L. (2013). Silicon based polytetrafluoroethylene electrets: Preparation and corona charging characteristics. Journal of Electrostatics, 71(4), 666–672.

    Article  Google Scholar 

  29. Boisseau, S., Despesse, G., & Sylvestre, A. (2010). Optimization of an electret-based energy harvester. Smart Materials and Structures, 19(7), 075015.

    Article  Google Scholar 

  30. Khaligh, A., Zeng, P., & Zheng, C. (2010). Kinetic energy harvesting using piezoelectric and electromagnetic technologies—State of the art. IEEE Transactions on Industrial Electronics, 57(3), 850–860.

    Article  Google Scholar 

  31. Naifar, S., Bradai, S., Viehweger, C., & Kanoun, O. (2017). Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation. Measurement, 106, 251–263.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China Grant No. 51705429 and Natural Science Foundation of Shaanxi Province No. 2018JQ5030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Tang.

Ethics declarations

Conflicts of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Tang, L., Tao, K. et al. Modelling and Validation of Electret-Based Vibration Energy Harvesters in View of Charge Migration. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 113–123 (2021). https://doi.org/10.1007/s40684-019-00156-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00156-8

Keywords

Navigation