Skip to main content
Log in

Trends in Biological Nutrient Removal for the Treatment of Low Strength Organic Wastewaters

  • Biology and Pollution (G O’Mullan and R Boopathy, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Recently, the quickly growing population living in urban location has caused numerous conflicts related to increase in water demand and water pollution. In urban areas, the surface water bodies allow runoffs and storms and in addition act as wastewater drainage pathways. Mostly, the imperfect separation of rainwater and clean wastewater has made large quantities of wastewater discharged into the surface water, resulting in serious pollution. There are many treatment methods for the polluted water bodies such as coagulation, filtration, and ecological floating bed which are related to nutrient removal. The above listed methods are usually capable in reducing pollution load. Wastewaters generated from two sources such as point source (domestic and industries) and non-point source (agricultural and storm water runoff). Finally it reaches nearby water bodies and the abovementioned methods are to be frequently employed in a wastewater treatment plant to remove nutrients. Most of the pollutants in the vastly polluted water are in dissolved forms; hence, an appropriate treatment method relevant to the design and development of the integrated multistage reactor with extended wastewater treatment is reviewed in this paper. Evaluating the accumulation, precipitation, retention, and removal of phosphorus, along with removal of nitrogen, is discussed in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pham TL, Bui MH. Removal of nutrients from fertilizer plant wastewater using Scenedesmus sp.: formation of bioflocculation and enhancement of removal efficiency. J Chemother Hindawi Limited. 2020;2020:8094272.

    Google Scholar 

  2. Pham TL, Utsumi M. An overview of the accumulation of microcystins in aquatic ecosystems. J Environ Manag. 2018;213:520–9.

    CAS  Google Scholar 

  3. Banu JR, Uan DK, Chung I-J, Kaliappan S, Yeom I-T. A study on the performance of a pilot scale A2/0-MBR system in treating domestic wastewater. Undefined. 2009;30(6):959–63.

    CAS  Google Scholar 

  4. Meena RAA, Kannah RY, Sindhu J, Ragavi J, Kumar G, Gunasekaran M, et al. Trends and resource recovery in biological wastewater treatment system. Bioresour Technol Reports. 2019;7:100235.

    Google Scholar 

  5. Raj SE, Banu JR, Kaliappan S, Yeom I-T, Adish KS. Effects of side-stream, low temperature phosphorus recovery on the performance of anaerobic/anoxic/oxic systems integrated with sludge pretreatment. Bioresour Technol. 2013;140:376–84.

    CAS  Google Scholar 

  6. Kavitha S, Kannah RY, Banu JR, Kaliappan S, Johnson M. Biological disintegration of microalgae for biomethane recovery-prediction of biodegradability and computation of energy balance. Bioresour Technol. 2017;244:1367–75.

    CAS  Google Scholar 

  7. Kavitha S, Jayashree C, Kumar SA, Yeom IT, Banu JR. The enhancement of anaerobic biodegradability of waste activated sludge by surfactant mediated biological pretreatment. Bioresour Technol. 2014;168:159–66.

    CAS  Google Scholar 

  8. Kavitha S, Subbulakshmi P, Banu JR, Gobi M, Yeom IT. Enhancement of biogas production from microalgal biomass through cellulolytic bacterial pretreatment. Bioresour Technol. 2017;233:34–43.

    CAS  Google Scholar 

  9. Kannah RY, Gunasekaran M, Kumar G, Ushani U, Do K-U, Banu JR. Recent developments in biological nutrient removal. In: Bui XT, Chiemchaisri C, Fujioka T, Varjani S, editors. Water and wastewater treatment technologies. Energy, Environment, and Sustainability. Singapore: Springer; 2019. p. 211–36.

    Google Scholar 

  10. Kannah RY, Merrylin J, Preethi, Sivashanmugam P, Gunasekaran M, Kumar G, Banu JR. Valorization of nutrient-rich urinal wastewater by microalgae for biofuel production BT - application of microalgae in wastewater treatment: volume 2: biorefinery approaches of wastewater treatment. In: Gupta SK, Bux F, editors. Cham: Springer International Publishing; 2019;393–426.

  11. Shin H-S, Park M-G, Jung J-Y. Nutrient removal processes for low strength wastewater. Environ Technol Taylor & Francis. 2001;22:889–95.

    CAS  Google Scholar 

  12. Liang X, Wang Z, Zhang Y, Zhu C, Lin L, Xu L. No-tillage effects on N and P exports across a rice-planted watershed. Environ Sci Pollut Res. 2016;23:8598–609.

    CAS  Google Scholar 

  13. Zhou X, Helmers MJ, Asbjornsen H, Kolka R, Tomer MD, Cruse RM. Nutrient removal by prairie filter strips in agricultural landscapes. J Soil Water Conserv Soc. 2014;69:54–64.

    Google Scholar 

  14. Hathaway JM, Tucker RS, Spooner JM, Hunt WF. A traditional analysis of the first flush effect for nutrients in stormwater runoff from two small urban catchments. Water Air Soil Pollut. 2012;223:5903–15.

    CAS  Google Scholar 

  15. Zhang M, Zhu C, Gao J, Fan Y, He L, He C, et al. Deep-level nutrient removal and denitrifying phosphorus removal (DPR) potential assessment in a continuous two-sludge system treating low-strength wastewater: the transition from nitration to nitritation. Sci Total Environ. 2020;744:140940.

    CAS  Google Scholar 

  16. Ryu H-D, Lee S-I. Comparison of 4-stage biological aerated filter (BAF) with MLE process in nitrogen removal from low carbon-to-nitrogen wastewater. Environ Eng Sci. Mary Ann Liebert, Inc. 2 Madison Avenue Larchmont, NY 10538 USA ; 2009;26:163–70.

  17. Metcalf & Eddy, George Tchobanoglous. Wastewater energy: treatment and reuse. New York [etc.] McGraw-Hill. McGraw-Hill; 2004.

  18. Yang Y, Pignatello JJ, Ma J, Mitch WA. Effect of matrix components on UV/H2O2 and UV/S2O82- advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. Water Res. 2016;89:192–200.

    CAS  Google Scholar 

  19. Beita-Sandí W, Karanfil T. Removal of both N-nitrosodimethylamine and trihalomethanes precursors in a single treatment using ion exchange resins. Water Res. 2017;124:20–8.

    Google Scholar 

  20. Sun J, Dai X, Wang Q, van Loosdrecht MCM, Ni BJ. Microplastics in wastewater treatment plants: detection, occurrence and removal. Water Res. 2019:21–37.

  21. Hatton TA, Su X, Achilleos D, Jamison T. Redox-based electrochemical adsorption technologies for energy-efficient water purification and wastewater treatment. Sep Technol IX New Front Media, Tech Technol 2017; 1.

  22. Ezugbe EO, Rathilal S. Membrane technologies in wastewater treatment: a review. Membranes (Basel). 2020;10.

  23. Tong T, Carlson KH, Robbins CA, Zhang Z, Du X. Membrane-based treatment of shale oil and gas wastewater: the current state of knowledge. Front Environ Sci Eng. Higher Education Press; 2019; 1–17.

  24. Butzen EL, Santos GC, Fortuna SS, Brião VB. Membrane bioreactor for mall wastewater treatment. Rev Ambient e Agua. Institute Environ Res Hydrogr Basins (IPABHi); 2020;15.

  25. Kader AM. A review of membrane bioreactor (MBR) technology and their applications in the wastewater treatment systems. Desalin Water Treat. 2015;32:111–9.

    Google Scholar 

  26. Na JH, Nam DH, Ko BG, Lee CY, Kang KH. Reduced sludge production in a membrane bioreactor by uncoupling metabolism and its effect on phosphorus accumulation in the biomass. Environ Technol (United Kingdom). Taylor and Francis Ltd. 2017;38:3007–15.

    CAS  Google Scholar 

  27. Akbarzadeh A, Khodabakhshi A, Arbabi M. Optimization of SBR system for enhanced biological phosphorus and nitrogen removal. Int J Environ Health Eng. 2012;1:49.

    Google Scholar 

  28. Ekama GA, Wentzel MC. 3rd AWWA/IAWQ Regional Conference on Biological Nutrient Removal, Brisbane, Australia, 30 November-4 December 1997: difficulties and developments in biological nutrient removal technology and modelling. Water Sci Technol. No longer published by ; 1999;1–11.

  29. Soliman M, Eldyasti A. Development of partial nitrification as a first step of nitrite shunt process in a sequential batch reactor (SBR) using ammonium oxidizing bacteria (AOB) controlled by mixing regime. Bioresour Technol. 2016;221:85–95.

    CAS  Google Scholar 

  30. Magdum S, Kalyanraman V. Existing biological nitrogen removal processes and current scope of advancement. Res J Chem Environ. 2017;21:43–53.

    Google Scholar 

  31. Zhuang H, Wu Z, Xu L, Leu S-Y, Lee P-H. Energy-efficient single-stage nitrite shunt denitrification with saline sewage through concise dissolved oxygen (DO) supply: process performance and microbial communities. Microorganisms. Multidisciplinary Digital Publishing Institute. 2020;8:919.

    CAS  Google Scholar 

  32. Ge C-H, Dong Y, Li H, Li Q, Ni S-Q, Gao B. Nitritation-anammox process – a realizable and satisfactory way to remove nitrogen from high saline wastewater. Bioresour Technol. 2019;275:86–93.

    CAS  Google Scholar 

  33. Magdum S, Varigala S, Minde G, Bornare J, Kalyanraman V. Evaluation of sequential batch reactor (SBR) cycle design to observe the advantages of selector phase biology to achieve maximum nutrient removal. Int J Sci Res Environ Sci. 2015;3:234–8.

    CAS  Google Scholar 

  34. Sliekers AO, Derwort N, Gomez JLC, Strous M, Kuenen JG, Jetten MSM. Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res. 2002;36:2475–82.

    CAS  Google Scholar 

  35. Xiao Y, Xiao Q, Xiang S. Modeling of simultaneous partial nitrification, anammox and denitrification process in a single reactor. J Environ Anal Toxicol. 2014;04:1000204.

    Google Scholar 

  36. Pedros PB, Onnis-Hayden A, Tyler C. Investigation of nitrification and nitrogen removal from centrate in a submerged attached-growth bioreactor. Water Environ Res. 2008;80:222–8.

    CAS  Google Scholar 

  37. Sánchez Guillén JA, Jayawardana LKMCB, Lopez Vazquez CM, de Oliveira Cruz LM, Brdjanovic D, van Lier JB. Autotrophic nitrogen removal over nitrite in a sponge-bed trickling filter. Bioresour Technol. 2015;187:314–25.

    Google Scholar 

  38. Dai Y, Constantinou A, Griffiths P. Enhanced nitrogen removal in trickling filter plants. Water Sci Technol. 2013;67:2273–80.

    CAS  Google Scholar 

  39. Wang L, Wang X, Yang F, Kong M, Peng F, Chao J. Nitrogen removal performance and ammonia- and nitrite-oxidizing bacterial community analysis of a novel industrial waste-based biofilter. Chem Eng J. 2016;299:156–66.

    CAS  Google Scholar 

  40. Kagawa Y, Tahata J, Kishida N, Matsumoto S, Picioreanu C, van Loosdrecht MCM. Modeling the nutrient removal process in aerobic granular sludge system by coupling the reactor-and granule-scale models. Biotechnol Bioeng Wiley Online Library. 2015;112:53–64.

    CAS  Google Scholar 

  41. Steichen M, Kadava A, Shaw A, Scanlan P, Martin M, Kazemi S. A new paradigm: carbon footprint and sustainability assessment for process selection. Proc Water Environ Fed. 2009;2009:5381–98.

    Google Scholar 

  42. Oehmen A, Saunders AM, Vives MT, Yuan Z, Keller J. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. J Biotechnol J Biotechnol. 2006;123:22–32.

    CAS  Google Scholar 

  43. Coma M Biological nutrient removal in SBR technology: from floccular to granular sludge. Universitat de Girona; 2011.

  44. Liu H, Han P, Liu H, Zhou G, Fu B, Zheng Z. Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater. Bioresour Technol. 2018;260:105–14.

    CAS  Google Scholar 

  45. Curtin K, Duerre S, Fitzpatrick B, Meyer P. Biological nutrient removal. 2011.

  46. Mino T, Arun V, Tsuzuki Y, Matsuo T. Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. Biol Phosphate Remov from Wastewaters 1987: 27–38.

  47. Dorofeev AG, Nikolaev YA, Mardanov AV, Pimenov NV. Role of phosphate-accumulating bacteria in biological phosphorus removal from wastewater. Appl Biochem Microbiol Pleiades Publishing. 2020;56:1–14.

    CAS  Google Scholar 

  48. Li Y, Rahman SM, Li G, Fowle W, Nielsen PH, Gu AZ. The composition and implications of polyphosphate-metal in enhanced biological phosphorus removal systems. Environ Sci Technol American Chemical Society. 2019;53:1536–44.

    CAS  Google Scholar 

  49. Schönborn C, Bauer H-D, Röske I. Stability of enhanced biological phosphorus removal and composition of polyphosphate granules. Water Res. 2001;35:3190–6.

    Google Scholar 

  50. Acevedo B, Oehmen A, Carvalho G, Seco A, Borrás L, Barat R. Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage. Water Res. 2012;46:1889–900.

    CAS  Google Scholar 

  51. Brown N, Shilton A. Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: current understanding and future direction. Rev Environ Sci Bio/Technology. 2014;13:321–8.

    CAS  Google Scholar 

  52. Bindhu BK, Madhu G. Influence of organic loading rates on aerobic granulation process for the treatment of wastewater. J Clean Energy Technol. 2013;1:84–7.

    CAS  Google Scholar 

  53. Pronk M, de Kreuk MK, de Bruin B, Kamminga P, Kleerebezem R, van Loosdrecht MCM. Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res. 2015;84:207–17.

    CAS  Google Scholar 

  54. Mielcarek A, Rodziewicz J, Janczukowicz W, Thornton A. The feasibility of citric acid as external carbon source for biological phosphorus removal in a sequencing batch biofilm reactor (SBBR). Biochem Eng J. 2015;93:102–7.

    CAS  Google Scholar 

  55. Jabari P, Munz G, Oleszkiewicz JA. Selection of denitrifying phosphorous accumulating organisms in IFAS systems: comparison of nitrite with nitrate as an electron acceptor. Chemosphere. 2014;109:20–7.

    CAS  Google Scholar 

  56. Yin J, Zhang P, Li F, Li G, Hai B. Simultaneous biological nitrogen and phosphorus removal with a sequencing batch reactor–biofilm system. Int Biodeterior Biodegradation. 2015;103:221–6.

    CAS  Google Scholar 

  57. Yang S, Yang F, Fu Z, Wang T, Lei R. Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment. J Hazard Mater. 2010;175:551–7.

    CAS  Google Scholar 

  58. Díez-Montero R, De Florio L, González-Viar M, Herrero M, Tejero I. Performance evaluation of a novel anaerobic–anoxic sludge blanket reactor for biological nutrient removal treating municipal wastewater. Bioresour Technol. 2016;209:195–204.

    Google Scholar 

  59. Dytczak MA, Londry KL, Oleszkiewicz JA. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates. Water Res. 2008;42:2320–8.

    CAS  Google Scholar 

  60. Kim IT, Lee YE, Yoo YS, Jeong W, Yoon YH, Shin DC. Development of a combined aerobic-anoxic and methane oxidation bioreactor system using mixed methanotrophs and biogas for wastewater denitrification. Water (Switzerland). 2019;11:1377.

    CAS  Google Scholar 

  61. Evans LV. Biofilms: recent advances in their study and control. Evans LV, editor. Biofilms recent adbances their study control. Br Library Cataloguing in Publication Data; 2005.

  62. Leyva-Díaz JC, Martín-Pascual J, Poyatos JM. Moving bed biofilm reactor to treat wastewater. Int J Environ Sci Technol:Center for Environmental and Energy Research and Studies. 2017;14:881–910.

    Google Scholar 

  63. Chowdhury N, Zhu J, Nakhla G, Patel A, Islam M. A novel liquid-solid circulating fluidized-bed bioreactor for biological nutrient removal from municipal wastewater. Chem Eng Technol Wiley-VCH Verlag. 2009;32:364–72.

    CAS  Google Scholar 

  64. Liu A, Nelson MJ, Wang X, Li H, He X, Zhao Z, Zhu J. Decentralized wastewater treatment in an urban setting: a pilot study of the circulating fluidized bed bioreactor treating septic tank effluent. Environ Technol (United Kingdom). Taylor and Francis Ltd.; 2019;1–31.

  65. Adoonsook D, Chia-Yuan C, Wongrueng A, Pumas C. A simple way to improve a conventional A/O-MBR for high simultaneous carbon and nutrient removal from synthetic municipal wastewater. PLoS One. Public Library of Science San Francisco, CA USA. 2019;14:e0214976.

    CAS  Google Scholar 

  66. Chen W, Chen S, Hu F, Liu W, Yang D, Wu J. A novel anammox reactor with a nitrogen gas circulation: performance, granule size, activity, and microbial community. Environ Sci Pollut Res Springer. 2020;27:18661–71.

    CAS  Google Scholar 

  67. Wang X, Zhao J, Yu D, Chen G, Du S, Zhen J, et al. Stable nitrite accumulation and phosphorous removal from nitrate and municipal wastewaters in a combined process of endogenous partial denitrification and denitrifying phosphorus removal (EPDPR). Chem Eng J. 2019;355:560–71.

    CAS  Google Scholar 

  68. Baddour EM, Farhoud N, Sharholy M, Abdel-Magid IM. Biological treatment of poultry slaughterhouses wastewater by using aerobic moving bed biofilm reactor. Int Res J Public Environ Health. 2016;3:96–106.

    Google Scholar 

  69. De Sotto R, Bae S. Nutrient removal performance and microbiome of an energy-efficient reciprocation MLE-MBR operated under hypoxic conditions. Water Res. 2020;182:115991.

    Google Scholar 

  70. Zhang X, Wang C, Wu P, Yin W, Xu L. New insights on biological nutrient removal by coupling biofilm-based CANON and denitrifying phosphorus removal (CANDPR) process: long-term stability assessment and microbial community evolution. Sci Total Environ. 2020;730:138952.

    CAS  Google Scholar 

  71. Xu X, Qiu L, Wang C, Yang F. Achieving mainstream nitrogen and phosphorus removal through simultaneous partial nitrification, anammox, denitrification, and denitrifying phosphorus removal (SNADPR) process in a single-tank integrative reactor. Bioresour Technol. 2019;284:80–9.

    CAS  Google Scholar 

  72. Cheng C, Zhou Z, Pang H, Zheng Y, Chen L, Jiang L-M, et al. Correlation of microbial community structure with pollutants removal, sludge reduction and sludge characteristics in micro-aerobic side-stream reactor coupled membrane bioreactors under different hydraulic retention times. Bioresour Technol. 2018;260:177–85.

    CAS  Google Scholar 

  73. Eslami H, Ehrampoush MH, Falahzadeh H, Hematabadi PT, Khosravi R, Dalvand A, et al. Biodegradation and nutrients removal from greywater by an integrated fixed-film activated sludge (IFAS) in different organic loadings rates. AMB Express. 2018;8:3.

    Google Scholar 

  74. Bai Y, Zhang Y, Quan X, Chen S. Nutrient removal performance and microbial characteristics of a full-scale IFAS-EBPR process treating municipal wastewater. Water Sci Technol. 2016;73:1261–8.

    Google Scholar 

  75. Abualhail S, Naseer Mohammed R, Xiwu L. Integrated real-time control strategy in multi-tank A2O process for biological nutrient removal treating real domestic wastewater. Arab J Chem. 2017;10:S1041–54.

    CAS  Google Scholar 

  76. Do K-U, Banu RJ, Son D-H, Yeom I-T. Influence of ferrous sulfate on thermochemical sludge disintegration and on performances of wastewater treatment in a new process: anoxic–oxic membrane bioreactor coupled with sludge disintegration step. Biochem Eng J. 2012;66:20–6.

    CAS  Google Scholar 

  77. Banu JR, Do K-U, Kaliappan S, Yeom I-T. Effect of alum on nitrification during simultaneous phosphorous removal in anoxic/oxic reactor. Biotechnol Bioprocess Eng. 2009;14:543–8.

    CAS  Google Scholar 

  78. Banu JR, Uan DK, Yeom I-T. Nutrient removal in an A2O-MBR reactor with sludge reduction. Bioresour Technol. 2009;100:3820–4.

    Google Scholar 

  79. Do K, Banu JR, Chung I, Yeom I. Effect of thermochemical sludge pretreatment on sludge reduction and on performances of anoxic-aerobic membrane bioreactor treating low strength domestic wastewater. J Chem Technol Biotechnol. 2009;84:1350–5.

    CAS  Google Scholar 

  80. Banu JR, Do K-U, Yeom I-T. Effect of ferrous sulphate on nitrification during simultaneous phosphorus removal from domestic wastewater using a laboratory scale anoxic/oxic reactor. World J Microbiol Biotechnol. 2008;24:2981–6.

    CAS  Google Scholar 

  81. Daigger GT, Rittmann BE, Adham S, Andreottola G. Are membrane bioreactors ready for widespread application? Am Chem Soc. 2005;39:19.

    Google Scholar 

  82. Parco V, du Toit G, Wentzel M, Ekama G. Biological nutrient removal in membrane bioreactors: denitrification and phosphorus removal kinetics. Water Sci Technol. 2007;56:125–34.

    CAS  Google Scholar 

  83. Iorhemen OT, Hamza RA, Tay JH. Membrane bioreactor (Mbr) technology for wastewater treatment and reclamation: membrane fouling. Membranes (Basel). 2016;6(2):33.

    Google Scholar 

  84. Chen JC, Uan DK. Low dissolved oxygen membrane bioreactor processes (LDO-MBRs): a review. Int J Environ Eng. 2013;5:129.

    Google Scholar 

  85. Galil NI, Malachi KB-D, Sheindorf C. Biological nutrient removal in membrane biological reactors. Environ Eng Sci. 2009;26:817–24.

    CAS  Google Scholar 

  86. Dvořák L, Svojitka J, Wanner J, Wintgens T. Nitrification performance in a membrane bioreactor treating industrial wastewater. Water Res. 2013;47:4412–21.

    Google Scholar 

  87. Monclús H, Sipma J, Ferrero G, Rodriguez-Roda I, Comas J. Biological nutrient removal in an MBR treating municipal wastewater with special focus on biological phosphorus removal. Bioresour Technol. 2010;101:3984–91.

    Google Scholar 

  88. Lin H, Peng W, Zhang M, Chen J, Hong H, Zhang Y. A review on anaerobic membrane bioreactors: applications, membrane fouling and future perspectives. Desalination. 2013:169–88.

  89. Maaz M, Yasin M, Aslam M, Kumar G, Atabani AE, Idrees M. Anaerobic membrane bioreactors for wastewater treatment: novel configurations, fouling control and energy considerations. Bioresour Technol. 2019:358–72.

  90. Ribera-Pi J, Badia-Fabregat M, Calderer M, Polášková M, Svojitka J, Rovira M. Anaerobic membrane bioreactor (AnMBR) for the treatment of cheese whey for the potential recovery of water and energy. Waste Biomass Valorization Springer. 2020;11:1821–35.

    CAS  Google Scholar 

  91. Smith AL, Stadler LB, Love NG, Skerlos SJ, Raskin L. Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: a critical review. Bioresour Technol. 2012;122:149–59.

    CAS  Google Scholar 

  92. Itokawa H, Thiemig C, Pinnekamp J. Design and operating experiences of municipal MBRs in Europe. Water Sci Technol. 2008;58:2319–27.

    CAS  Google Scholar 

  93. da Costa RE, Lobo-Recio MA, Battistelli AA, Bassin JP, Belli TJ, Lapolli FR. Comparative study on treatment performance, membrane fouling, and microbial community profile between conventional and hybrid sequencing batch membrane bioreactors for municipal wastewater treatment. Environ Sci Pollut Res. 2018;25:32767–82.

    Google Scholar 

  94. Yuan H, Chen Y, Zhang H, Jiang S, Zhou Q, Gu G. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ Sci Technol. 2006;40:2025–9.

    CAS  Google Scholar 

  95. Tong J, Chen Y. Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation. Environ Sci Technol. 2007;41:7126–30.

    CAS  Google Scholar 

  96. Kang SJ, Zharaddine KPO, Takacs KM, Collins J, Wheeler J, Zharaddine P. Energy sustainability and nutrient removal from municipal wastewater. Proc Water Environ Fed. 2009;2009:6897–908.

    Google Scholar 

  97. Feng X-C, Bao X, Che L, Wu Q-L. Enhance biological nitrogen and phosphorus removal in wastewater treatment process by adding food waste fermentation liquid as external carbon source. Biochem Eng J. 2021;165:107811.

    CAS  Google Scholar 

  98. Kim JO, Chung J. Implementing chemical precipitation as a pretreatment for phosphorus removal in membrane bioreactor-based municipal wastewater treatment plants. KSCE J Civ Eng. 2014;18:956–63.

    Google Scholar 

  99. Dong C, Huang Y-H, Wang S-C, Wang X-H. Oxygen supply and wastewater treatment in subsurface-flow constructed wetland mesocosm: role of plant presence. Pol J Environ Stud. 2016;25:573–9.

    CAS  Google Scholar 

  100. Wang Q, Hu Y, Xie H, Yang Z. Constructed wetlands: a review on the role of radial oxygen loss in the rhizosphere by macrophytes. Water. 2018;10:678.

    Google Scholar 

  101. IWA. The reuse opportunity. Wastewater Rep. 2018.

  102. Hu Z, Houweling D, Dold P. Biological nutrient removal in municipal wastewater treatment: new directions in sustainability. J Environ Eng. 2012;138:307–17.

    CAS  Google Scholar 

  103. Al-Ghouti MA, Al-Kaabi MA, Ashfaq MY, Da’na DA. Produced water characteristics, treatment and reuse: a review. J Water Process Eng. 2019;28:222–39.

    Google Scholar 

  104. Kõrgmaa V, Kriipsalu M, Tenno T, Lember E, Kuusik A, Lemmiksoo V. Factors affecting SVI in small scale WWTPs. Water Sci Technol. 2019;79:1766–76.

    Google Scholar 

  105. Chowdhury P, Viraraghavan T, Srinivasan A. Biological treatment processes for fish processing wastewater - a review. Bioresour Technol. 2010;101:439–49.

    CAS  Google Scholar 

  106. Durai G, Rajasimman M. Biological treatment of tannery wastewater - a review. J Environ Sci Technol. 2011;4:1–17.

    CAS  Google Scholar 

  107. Rani B, Maheshwari R, Kumar Yadav R, Pareek D, Sharma A. Resolution to provide safe drinking water for sustainability of future perspectives. Res J Chem Environ Sci. 2013;4:50–4.

    Google Scholar 

  108. Kassab G, Halalsheh M, Klapwijk A, Fayyad M, van Lier JB. Sequential anaerobic-aerobic treatment for domestic wastewater - a review. Bioresour Technol. 2010;101:3299–310.

    CAS  Google Scholar 

  109. Yaseen DA, Scholz M. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol. 2019;16:1193–226.

    CAS  Google Scholar 

  110. Bhatia D, Sharma NR, Singh J, Kanwar RS. Biological methods for textile dye removal from wastewater: a review. Crit Rev Environ Sci Technol. Taylor and Francis Inc. 2017;47:1836–76.

    CAS  Google Scholar 

  111. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB. A critical review on textile wastewater treatments: possible approaches. J Environ Manag. 2016;182:351–66.

    CAS  Google Scholar 

  112. Seow TW, Lim CK. Removal of dye by adsorption : a review. J Bioremediat Biodegrad. 2016;7:371 37775854.

    Google Scholar 

  113. Choudhary S, Parmar N. Hazard assessment of liquid effluent treatment plant in pharmaceutical industry. Int J Technol NonTechnol Res. 2013;4:209–2014.

    Google Scholar 

  114. Adishkumar S, Sivajothi S, Rajesh BJ. Coupled solar photo-Fenton process with aerobic sequential batch reactor for treatment of pharmaceutical wastewater. Desalin Water Treat. 2012;48:89–95.

    CAS  Google Scholar 

  115. Upadhye V, Joshi SS, Logy T. Advances in wastewater treatment- a review 2012; 1–5.

  116. Toczyłowska-Mamińska R. Limits and perspectives of pulp and paper industry wastewater treatment – a review. Renew Sust Energ Rev. 2017:764–72.

  117. Ashrafi O, Yerushalmi L, Haghighat F. Greenhouse gas emission by wastewater treatment plants of the pulp and paper industry - modeling and simulation. Int J Greenh Gas Control. 2013;17:462–72.

    CAS  Google Scholar 

  118. Rubio-Clemente A, Chica E, Peñuela GA. Petrochemical wastewater treatment by photo-Fenton process. Water Air Soil Pollut. 2015;226:1–18.

    CAS  Google Scholar 

  119. Raut-Jadhav S, Badve MP, Pinjari DV, Saini DR, Sonawane SH, Pandit AB. Treatment of the pesticide industry effluent using hydrodynamic cavitation and its combination with process intensifying additives (H2O2 and ozone). Chem Eng J. 2016;295:326–35.

    CAS  Google Scholar 

  120. Alalm MG, Tawfik A, Ookawara S. Degradation of four pharmaceuticals by solar photo-Fenton process: kinetics and costs estimation. J Environ Chem Eng. 2015;3:46–51.

    CAS  Google Scholar 

  121. Zapata A, Oller I, Sirtori C, Rodríguez A, Sánchez-Pérez JA, López A. Decontamination of industrial wastewater containing pesticides by combining large-scale homogeneous solar photocatalysis and biological treatment. Chem Eng J. 2010;160:447–56.

    CAS  Google Scholar 

  122. Maiti D, Ansari I, Rather MA, Deepa A. Comprehensive review on wastewater discharged from the coal-related industries – characteristics and treatment strategies. Water Sci Technol. 2019;79:2023–35.

    CAS  Google Scholar 

  123. Vaseem H, Singh VK, Singh MP. Heavy metal pollution due to coal washery effluent and its decontamination using a macrofungus, Pleurotus ostreatus. Ecotoxicol Environ Saf. 2017;145:42–9.

    CAS  Google Scholar 

  124. Jeyanayagam S True confessions of the biological nutrient removal process. Florida Water Resour J 2005;37–46.

  125. Sattayatewa C, Pagilla K, Sharp R, Pitt P. Fate of organic nitrogen in four biological nutrient removal wastewater treatment plants. Water Environ Res. 2010;82:2306–15.

    CAS  Google Scholar 

  126. Pagilla KR, Urgun-Demirtas M, Czerwionka K, Makinia J. Nitrogen speciation in wastewater treatment plant influents and effluents—the US and Polish case studies. Water Sci Technol. 2008;57:1511–7.

    CAS  Google Scholar 

  127. Zheng X, Zhou W, Wan R, Luo J, Su Y, Huang H, et al. Increasing municipal wastewater BNR by using the preferred carbon source derived from kitchen wastewater to enhance phosphorus uptake and short-cut nitrification-denitrification. Chem Eng J. 2018;344:556–64.

    CAS  Google Scholar 

  128. Hao X, Liu R, Huang X. Evaluation of the potential for operating carbon neutral WWTPs in China. Water Res. 2015;87:424–31.

    CAS  Google Scholar 

  129. Frison N, Katsou E, Malamis S, Bolzonella D, Fatone F. Biological nutrients removal via nitrite from the supernatant of anaerobic co-digestion using a pilot-scale sequencing batch reactor operating under transient conditions. Chem Eng J. 2013;230:595–604.

    CAS  Google Scholar 

  130. Zhang DQ, Tan SK, Gersberg RM, Zhu J, Sadreddini S, Li Y. Nutrient removal in tropical subsurface flow constructed wetlands under batch and continuous flow conditions. J Environ Manag Academic Press. 2012;96:1–6.

    Google Scholar 

  131. Kumar M, Lee PY, Fukusihma T, Whang LM, Lin JG. Effect of supplementary carbon addition in the treatment of low C/N high-technology industrial wastewater by MBR. Bioresour Technol. 2012;113:148–53.

    CAS  Google Scholar 

  132. Carrera J, Vicent T, Lafuente J. Effect of influent COD/N ratio on biological nitrogen removal (BNR) from high-strength ammonium industrial wastewater. Process Biochem. 2004;39:2035–41.

    CAS  Google Scholar 

  133. Fu Z, Yang F, An Y, Xue Y. Simultaneous nitrification and denitrification coupled with phosphorus removal in an modified anoxic/oxic-membrane bioreactor (a/O-MBR). Biochem Eng J. 2009;43:191–6.

    CAS  Google Scholar 

  134. Yao H, Liu H, He Y, Zhang S, Sun P, Huang C. Performance of an ANAMMOX reactor treating wastewater generated by antibiotic and starch production processes. Front Environ Sci Eng China Springer. 2012;6:875–83.

    CAS  Google Scholar 

  135. Fajri JA, Fujisawa T, Trianda Y, Ishiguro Y, Cui G, Li F, et al. Effect of aeration rates on removals of organic carbon and nitrogen in small onsite wastewater treatment system (Johkasou). MATEC Web Conf EDP Sci. 2018;147:04008.

    Google Scholar 

  136. Zhang M, Lawlor PG, Wu G, Lynch B, Zhan X. Partial nitrification and nutrient removal in intermittently aerated sequencing batch reactors treating separated digestate liquid after anaerobic digestion of pig manure. Bioprocess Biosyst Eng. 2011;34:1049–56.

    Google Scholar 

  137. Song X, Liu R, Chen L, Dong B, Kawagishi T. Advantages of intermittently aerated SBR over conventional SBR on nitrogen removal for the treatment of digested piggery wastewater. Front Environ Sci Eng. Higher Education Press. 2017;11:1–10.

    Google Scholar 

  138. Spellman FR. Treatment plant operators. N Y 2004.

  139. Liu H, Leng F, Chen P, Kueppers S. Pollutant removal characteristics of a two-influent-line BNR process performing denitrifying phosphorus removal: role of sludge recycling ratios. Water Sci Technol. 2016;74:2474–82.

    CAS  Google Scholar 

  140. Grady L, Daigger GT, Love NG, Filipe CDM. Biological wastewater treatment. 3rd ed. New York: CRC Press; 2011.

    Google Scholar 

  141. Lee WS, Chua ASM, Yeoh HK, Ngoh GC. A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J. 2014;235:83–99.

    CAS  Google Scholar 

  142. Kumar G, Bakonyi P, Sivagurunathan P, Nemestóthy N, Bélafi-Bakó K, Lin CY. Improved microbial conversion of de-oiled Jatropha waste into biohydrogen via inoculum pretreatment: process optimization by experimental design approach. Biofuel Res J. 2015;2:209–14.

    CAS  Google Scholar 

  143. Xu S, Wu D, Hu Z. Impact of hydraulic retention time on organic and nutrient removal in a membrane coupled sequencing batch reactor. Water Res. 2014;55:12–20.

    CAS  Google Scholar 

  144. Zhao W, Ting YP, Chen JP, Xing CH, Shi SQ. Advanced primary treatment of waste water using a bio-flocculation-adsorption sedimentation process. Acta Biotechnol. 2000;20:53–64.

    CAS  Google Scholar 

  145. Wu H, Fan J, Zhang J, Ngo HH, Guo W, Liang S. Strategies and techniques to enhance constructed wetland performance for sustainable wastewater treatment. Environ Sci Pollut Res Springer Verlag. 2015;22:14637–50.

    Google Scholar 

  146. Kadlec RH, Knight RL, Vymazal J, Brix H, Cooper P, Haber R. Constructed wetlands for pollution control. Denmark: IWA; 2000.

    Google Scholar 

  147. Vymazal J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water Res. 2013;47:4795–811.

    CAS  Google Scholar 

  148. Bachand PAM, Horne AJ. Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecol Eng. 1999;14:17–32.

    Google Scholar 

  149. Liu S, Yan B, Wang L. The layer effect in nutrient removal by two indigenous plant species in horizontal flow constructed wetlands. Ecol Eng. 2011;37:2101–4.

    Google Scholar 

  150. Trein CM, Zumalacarregui JAG, de Andrade Moraes MA, Von Sperling M. Reduction of area and influence of the deposit layer in the first stage of a full-scale French system of vertical flow constructed wetlands in a tropical area. Water Sci Technol. 2019;80:347–56.

    Google Scholar 

  151. Vymazal J, Kröpfelová L. A three-stage experimental constructed wetland for treatment of domestic sewage: first 2 years of operation. Ecol Eng. 2011;37:90–8.

    Google Scholar 

  152. Smith E, Gordon R, Madani A, Stratton G. Year-round treatment of dairy wastewater by constructed wetlands in Atlantic Canada. Soc Wetland Sci. 2006;26:349–57.

    Google Scholar 

  153. Wu H, Zhang J, Li P, Zhang J, Xie H, Zhang B. Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China. Ecol Eng. 2011;37:560–8.

    Google Scholar 

  154. Bosak V, VanderZaag A, Crolla A, Kinsley C, Gordon R. Performance of a constructed wetland and pretreatment system receiving potato farm wash water. Water. 2016;8:183.

    Google Scholar 

  155. Wang F, Liu Y, Ma Y, Wu X, Yang H. Characterization of nitrification and microbial community in a shallow moss constructed wetland at cold temperatures. Ecol Eng. 2012;42:124–9.

    Google Scholar 

  156. Gao DW, Hu Q. Bio-contact oxidation and greenhouse-structured wetland system for rural sewage recycling in cold regions: a full-scale study. Ecol Eng. 2012;49:249–53.

    Google Scholar 

  157. Rai UN, Upadhyay AK, Singh NK, Dwivedi S, Tripathi RD. Seasonal applicability of horizontal sub-surface flow constructed wetland for trace elements and nutrient removal from urban wastes to conserve Ganga River water quality at Haridwar. India Ecol Eng. 2015;81:115–22.

    Google Scholar 

  158. Yates CN, Varickanickal J, Cousins S, Wootton B. Testing the ability to enhance nitrogen removal at cold temperatures with C. aquatilis in a horizontal subsurface flow wetland system. Ecol Eng. 2016;94:344–51.

    Google Scholar 

  159. Rozema ER, Rozema LR, Zheng Y. A vertical flow constructed wetland for the treatment of winery process water and domestic sewage in Ontario, Canada: six years of performance data. Ecol Eng. 2016;86:262–8.

    Google Scholar 

  160. Sani A, Scholz M, Bouillon L. Seasonal assessment of experimental vertical-flow constructed wetlands treating domestic wastewater. Bioresour Technol. 2013;147:585–96.

    CAS  Google Scholar 

  161. Zhang X, Inoue T, Kato K, Izumoto H, Harada J, Wu D. Multi-stage hybrid subsurface flow constructed wetlands for treating piggery and dairy wastewater in cold climate. Environ Technol (United Kingdom). Taylor and Francis Ltd. 2017;38:183–91.

    CAS  Google Scholar 

  162. Sharma PK, Takashi I, Kato K, Ietsugu H, Tomita K, Nagasawa T. Seasonal efficiency of a hybrid sub-surface flow constructed wetland system in treating milking parlor wastewater at northern Hokkaido. Ecol Eng. 2013;53:257–66.

    Google Scholar 

  163. Zhu D, Sun C, Zhang H, Wu Z, Jia B, Zhang Y. Roles of vegetation, flow type and filled depth on livestock wastewater treatment through multi-level mineralized refuse-based constructed wetlands. Ecol Eng. 2012;39:7–15.

    Google Scholar 

  164. Wu Y, Han R, Yang X, Zhang Y, Zhang R. Long-term performance of an integrated constructed wetland for advanced treatment of mixed wastewater. Ecol Eng. 2017;99:91–8.

    Google Scholar 

  165. Rani N, Maheshwari RC, Kumar V, Vijay VK. Purification of pulp and paper mill effluent through Typha and Canna using constructed wetlands technology. J Water Reuse Desalin. 2011;1:237–42.

    CAS  Google Scholar 

  166. Tunçsiper B, Drizo A, Twohig E. Constructed wetlands as a potential management practice for cold climate dairy effluent treatment - VT. USA Catena. 2015;135:184–92.

    Google Scholar 

  167. Chen Z, Cuervo DP, Müller JA, Wiessner A, Köser H, Vymazal J. Hydroponic root mats for wastewater treatment—a review. Environ Sci Pollut Res. 2016;23:15911–28.

    CAS  Google Scholar 

  168. Wu J, Li Z, Wu L, Zhong F, Cui N, Dai Y. Triazophos (TAP) removal in horizontal subsurface flow constructed wetlands (HSCWs) and its accumulation in plants and substrates. Sci Rep Nature Publishing Group. 2017;7:1–8.

    Google Scholar 

  169. Dan TH, Quang LN, Chiem NH, Brix H. Treatment of high-strength wastewater in tropical constructed wetlands planted with Sesbania sesban: horizontal subsurface flow versus vertical downflow. Ecol Eng. 2011;37:711–20.

    Google Scholar 

  170. Maltais-Landry G, Chazarenc F, Comeau Y, Troesch S, Brisson J. Effects of artificial aeration, macrophyte species, and loading rate on removal efficiency in constructed wetland mesocosms treating fish farm wastewater. J Environ Eng Sci. 2007;6:409–14.

    CAS  Google Scholar 

  171. Zachritz WH, Hanson AT, Sauceda JA, Fitzsimmons KM. Evaluation of submerged surface flow (SSF) constructed wetlands for recirculating tilapia production systems. Aquac Eng. 2008;39:16–23.

    Google Scholar 

  172. Saeed T, Sun G. Kinetic modelling of nitrogen and organics removal in vertical and horizontal flow wetlands. Water Res. 2011;45:3137–52.

    CAS  Google Scholar 

  173. Villaseñor J, Capilla P, Rodrigo MA, Cañizares P, Fernández FJ. Operation of a horizontal subsurface flow constructed wetland - microbial fuel cell treating wastewater under different organic loading rates. Water Res. 2013;47:6731–8.

    Google Scholar 

  174. Stefanakis AI, Akratos CS, Tsihrintzis VA. Effect of wastewater step-feeding on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol Eng. 2011;37:431–43.

    Google Scholar 

  175. Calheiros CSC, Rangel AOSS, Castro PML. Constructed wetlands for tannery wastewater treatment in Portugal: ten years of experience. Int J Phytoremediation. 2014;16:859–70.

    Google Scholar 

  176. Worku A, Tefera N, Kloos H, Benor S. Constructed wetlands for phytoremediation of industrial wastewater in Addis Ababa, Ethiopia. Nanotechnol Environ Eng. 2018;3:1–11.

    CAS  Google Scholar 

  177. Knowles P, Dotro G, Nivala J, García J. Clogging in subsurface-flow treatment wetlands: occurrence and contributing factors. Ecol Eng. 2011;37:99–112.

    Google Scholar 

  178. Pedescoll A, Sidrach-Cardona R, Sánchez JC, Carretero J, Garfi M, Bécares E. Design configurations affecting flow pattern and solids accumulation in horizontal free water and subsurface flow constructed wetlands. Water Res. 2013;47:1448–58.

    CAS  Google Scholar 

  179. Shen C, Yang D, Dong B. A new operation mode solving clogging problems of horizontal subsurface constructed wetlands. Water Sci Technol. 2010;62:1045–51.

    CAS  Google Scholar 

  180. Nivala J, Knowles P, Dotro G, García J, Wallace S. Clogging in subsurface-flow treatment wetlands: measurement, modeling and management. Water Res. 2012;46:1625–40.

    CAS  Google Scholar 

  181. De la Varga D, Díaz MA, Ruiz I, Soto M. Avoiding clogging in constructed wetlands by using anaerobic digesters as pre-treatment. Ecol Eng. 2013;52:262–9.

    Google Scholar 

  182. Bailey HC, Digiorgio C, Kroll K, Hinton DE, Miller JL, Starrett G. Development of procedures for identifying pesticide toxicity in ambient waters: carbofuran, diazinon, chlorpyrifos. Environ Toxicol Chem. 1996;15:837–45.

    CAS  Google Scholar 

  183. Druzina B, Stegu M. Degradation study of selected organophosphorus insecticides in natural waters. Int J Environ Anal Chem. 2007;87:1079–93.

    CAS  Google Scholar 

  184. Saeed T, Sun G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. J Environ Manag. 2012;112:429–48.

    CAS  Google Scholar 

  185. Hadad HR, Mufarrege MM, Di Luca GAD, Maine MA. Salinity and pH effects on floating and emergent macrophytes in a constructed wetland. Water Sci Technol. 2017;2018:270–5.

    Google Scholar 

  186. Wortman SE. Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Sci Hortic (Amsterdam). 2015;194:34–42.

    CAS  Google Scholar 

  187. Zou Y, Hu Z, Zhang J, Xie H, Guimbaud C, Fang Y. Effects of pH on nitrogen transformations in media-based aquaponics. Bioresour Technol. 2016;210:81–7.

    CAS  Google Scholar 

  188. Schachtman DP, Reid RJ, Ayling SM. Phosphorus uptake by plants: from soil to cell. Plant Physiol. American Society of Plant Biologists. 1998;116:447–53.

    CAS  Google Scholar 

  189. Becquer A, Trap J, Irshad U, Ali MA, Claude P, et al. Front Plant Sci. Frontiers Research Foundation. 2014;5:15.

    Google Scholar 

  190. Faulwetter JL, Gagnon V, Sundberg C, Chazarenc F, Burr MD, Brisson J. Microbial processes influencing performance of treatment wetlands: a review. Ecol Eng. 2009;35:987–1004.

    Google Scholar 

  191. Ouellet-Plamondon C, Chazarenc F, Comeau Y, Brisson J. Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate. Ecol Eng. 2006;27:258–64.

    Google Scholar 

  192. Zhang J, Wang X, Li P, Zheng Z, Hu J. Treatment of methamidophos wastewater with constructed wetland. Chin J Environ Sci Technol. 2010;33:154–7.

    CAS  Google Scholar 

  193. Bondarenko S, Gan J, Haver DL, Kabashima JN. Persistence of selected organophosphate and carbamate insecticides in waters from a coastal watershed. Environ Toxicol Chem. 2004;23:2649–54.

    CAS  Google Scholar 

  194. Meng P, Pei H, Hu W, Shao Y, Li Z. How to increase microbial degradation in constructed wetlands: influencing factors and improvement measures. Bioresour Technol. 2014;157:316–26.

    CAS  Google Scholar 

  195. EPA. Wastewater treatment fact sheet: external carbon source for nitrogen removal. 2013.1–5.

  196. Chen J, Wang H. Evaluation and utilization of urban sewage treatmentand recycling process analysis. China Archit Ind Press. 2012 1–10.

  197. Guerrini A, Romano G, Indipendenza A. Energy efficiency drivers in wastewater treatment plants: a double bootstrap DEA analysis. Sustainability. MDPI AG. 2017;9:1126.

    Google Scholar 

  198. Rothausen SGSA, Conway D. Greenhouse-gas emissions from energy use in the water sector. Nat Clim Chang. 2011;1:210–9.

    CAS  Google Scholar 

  199. Xu J, Li Y, Wang H, Wu J, Wang X, Li F. Exploring the feasibility of energy self-sufficient wastewater treatment plants: a case study in eastern China. Energy Procedia. 2017:3055–61.

  200. Li W, Li L, Qiu G. Energy consumption and economic cost of typical wastewater treatment systems in Shenzhen, China. J Clean Prod. 2017;163:S374–8.

    Google Scholar 

  201. Gu Y, Li Y, Li X, Luo P, Wang H, Robinson ZP. The feasibility and challenges of energy self-sufficient wastewater treatment plants. Appl Energy. 2017;204:1463–75.

    Google Scholar 

  202. Prateep NA, Talang R, Sirivithayapakorn S, Polruang S. Environmental impacts and cost-effectiveness of Thailand’s centralized municipal wastewater treatment plants with different nutrient removal processes. J Clean Prod. 2020;256:120433.

    Google Scholar 

  203. Harrington R, O’Donovan G, McGrath G. Integrated constructed wetlands (ICW) working at the landscape scale: the Anne Valley project. Ireland Ecol Inform. 2013;14:104–7.

    Google Scholar 

  204. Gkika D, Gikas GD, Tsihrintzis VA. Construction and operation costs of constructed wetlands treating wastewater. Water Sci Technol. 2014;70:803–10.

    Google Scholar 

  205. Tyndall and Bowman. IOWA nutrient reduction strategy best management practice cost overview series: constructed wetlant. 2016.

  206. Freeman AI, Widdowson S, Murphy C, Cooper DJ. Economic assessment of aerated constructed treatment wetlands using whole life costing. Water Sci Technol. 2019;80:75–85.

    CAS  Google Scholar 

  207. Firth AEJ, Mac Dowell N, Fennell PS, Hallett JP. Assessing the economic viability of wetland remediation of wastewater, and the potential for parallel biomass valorisation. Environ Sci Water Res Technol. 2020;6:2103–21.

    CAS  Google Scholar 

  208. Seguí L, Alfranca O, García J. Techno-economical evaluation of water reuse for wetland restoration: a case study in a natural park in Catalonia, Northeastern Spain. Desalination. 2009;246:179–89.

    Google Scholar 

  209. Mburu N, Tebitendwa SM, van Bruggen JJA, Rousseau DPL, Lens PNL. Performance comparison and economics analysis of waste stabilization ponds and horizontal subsurface flow constructed wetlands treating domestic wastewater: a case study of the Juja sewage treatment works. J Environ Manag. 2013;128:220–5.

    CAS  Google Scholar 

  210. Alfranca O, García J, Varela H. Economic valuation of a created wetland fed with treated wastewater located in a peri-urban park in Catalonia. Spain Water Sci Technol. 2011;63:891–8.

    Google Scholar 

  211. Nguyen HTT, Le VQ, Hansen AA, Nielsen JL, Nielsen PH. High diversity and abundance of putative polyphosphate-accumulating Tetrasphaera-related bacteria in activated sludge systems. FEMS Microbiol Ecol. Blackwell Publishing Ltd Oxford, UK. 2011;76:256–67.

    CAS  Google Scholar 

  212. Wang D, Tooker NB, Srinivasan V, Li G, Fernandez LA, Schauer P. Side-stream enhanced biological phosphorus removal (S2EBPR) process improves system performance - a full-scale comparative study. Water Res. 2019;167.

  213. Kwak D-H, Lee K-C. Effect of floated sludge recycling on phosphorus removal in dissolved air flotation. Proc Inst Civ Eng - Water Manag. Thomas Telford Services. 2015;168:270–9.

    Google Scholar 

  214. Shi J, Lu X, Yu R, Zhu W. Nutrient removal and phosphorus recovery performances of a novel anaerobic-anoxic/nitrifying/induced crystallization process. Bioresour Technol. 2012;121:183–9.

    CAS  Google Scholar 

  215. Kuroda A, Takiguchi N, Gotanda T, Nomura K, Kato J, Ikeda T. A simple method to release polyphosphate from activated sludge for phosphorus reuse and recycling. Biotechnol Bioeng. 2002;78:333–8.

    CAS  Google Scholar 

  216. Ozdemir B, Yenigun O. A pilot scale study on high biomass systems: energy and cost analysis of sludge production. J Membr Sci. 2013;428:589–97.

    CAS  Google Scholar 

  217. Qiu Y, Shi H, He M. Nitrogen and phosphorous removal in municipal wastewater treatment plants in China: a review. Int J Chem Eng. 2010;2010:1–10.

    Google Scholar 

  218. Rahman SM, Eckelman MJ, Onnis-Hayden A, Gu AZ. Life-cycle assessment of advanced nutrient removal technologies for wastewater treatment. Environ Sci Technol. 2016;50:3020–30.

    CAS  Google Scholar 

  219. Kehrein P, van Loosdrecht M, Osseweijer P, Garfí M, Dewulf J, Posada J. A critical review of resource recovery from municipal wastewater treatment plants–market supply potentials, technologies and bottlenecks. Environ Sci Water Res Technol. 2020;6:877–910.

    CAS  Google Scholar 

Download references

Funding

This work is supported by the Department of Biotechnology, India under its initiative Mission innovation Challenge Scheme (IC4). The grant from the project entitled “A novel integrated biorefinery for conversion of lignocellulosic agro waste into value-added products and bioenergy (BT/PR31054/PBD/26/763/2019)” is utilized for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Rajesh Banu or Gopalakrishnan Kumar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biology and Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajesh Banu, J., Merrylin, J., Kavitha, S. et al. Trends in Biological Nutrient Removal for the Treatment of Low Strength Organic Wastewaters. Curr Pollution Rep 7, 1–30 (2021). https://doi.org/10.1007/s40726-020-00169-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-020-00169-x

Keywords

Navigation