Skip to main content

Advertisement

Log in

A Cookbook for Bioethanol from Macroalgae: Review of Selecting and Combining Processes to Enhance Bioethanol Production

  • Biology and Pollution (R Boopathy and Y Hong, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The depletion of fossil reserves and environmental challenges associated with fossil fuels are major drivers of the search for sustainable renewable energy sources. Bioethanol production from macroalgae is one of the promising alternatives to reduce use of fossil fuels and achieve energy security and ecological sustainability. The purpose of this review is to critically discuss the options to optimize the process parameters for steady production of bioethanol from macroalgae.

Recent Findings

A comprehensive literature review reveals that bioethanol production from macroalgae not only depends on the macroalgae type but also on the selection of pretreatment, hydrolysis, and fermentation options. Unlike the first- and second-generation feedstocks, macroalgae contains low concentrations of glucans. Thus high bioethanol concentration cannot be achieved by converting only glucans. Therefore, it is important to produce bioethanol from other carbohydrate components of macroalgae, such as alginate, sulphated polysaccharides, carrageenan, mannitol, and agar. The selection of the right hydrolysing agents (e.g., enzyme and/or acid) and steps to minimize formation of inhibitors during the process were found to be important factors affecting the efficiency of hydrolysis process. The hydrolysis enzymes currently used were developed for lignocellulosic and starch-based biomass, not for macroalgae, which is different in polysaccharide structure and composition. Also, the lack of appropriate fermenting microorganisms capable of converting heterogeneous monomeric sugars in macroalgae is a major factor limiting bioethanol yield during the fermentation process.

Summary

This review systematically discusses the implications of selecting different macroalgae types. The optimization of process parameters of different bioethanol production steps such as pretreatments, hydrolysis, and fermentation is discussed. It can be concluded that high bioethanol yield can be achieved by considering macroalgae type and composition, selecting appropriate pretreatment, hydrolysis, and fermenting microbes, and with effective bioethanol purification.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Abd-Rahim F, Wasoh H, Zakaria MR, Ariff A, Kapri R, Ramli N, Siew-Ling L. Production of high yield sugars from Kappaphycus alvarezii using combined methods of chemical and enzymatic hydrolysis. Food Hydrocoll. 2014;42:309–15.

    Article  CAS  Google Scholar 

  2. Adams JM, Gallagher JA, Donnison IS. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol. 2009;21(5):569.

    Article  CAS  Google Scholar 

  3. Al Abdallah Q, Nixon BT, Fortwendel JR. The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol. Front Energy Res. 2016;4:36.

    Article  Google Scholar 

  4. Álvarez-Viñas M, Flórez-Fernández N, Torres MD, Domínguez H. Successful approaches for a red seaweed biorefinery. Mar Drugs. 2019;17(11):620.

    Article  Google Scholar 

  5. Alvira P, Tomás-Pejó E, Ballesteros M, Negro M. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Biores Technol. 2010;101(13):4851–61.

    Article  CAS  Google Scholar 

  6. Anto S, Mukherjee SS, Muthappa R, Mathimani T, Deviram G, Kumar SS, Verma TN, Pugazhendhi A. Algae as green energy reserve: technological outlook on biofuel production. Chemosphere. 2020;242:125079.

  7. Aparicio E, Rodríguez-Jasso RM, Lara A, Loredo-Treviño A, Aguilar CN, Kostas ET, Ruiz HA. Biofuels production of third generation biorefinery from macroalgal biomass in the Mexican context: an overview. in: Sustainable Seaweed Technologies. Elsevier. 2020;393–446.

  8. Ardalan Y, Jazini M, Karimi K. Sargassum angustifolium brown macroalga as a high potential substrate for alginate and ethanol production with minimal nutrient requirement. Algal Res. 2018;36:29–36.

    Article  Google Scholar 

  9. Ayodele BV, Alsaffar MA, Mustapa SI. An overview of integration opportunities for sustainable bioethanol production from first-and second-generation sugar-based feedstocks. J Clean Prod. 2020;245:118857.

  10. Azizi N, Najafpour G, Younesi H. Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator. Int J Biol Macromol. 2017;101:1029–40.

    Article  CAS  Google Scholar 

  11. Bastos RG. Biofuels from microalgae: bioethanol. in: Energy from Microalgae. Springer, 2018;229–246.

  12. Behera B, Acharya A, Gargey IA, Aly N, Balasubramanian P. Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production. Bioresour Technol Rep. 2019;5:297–316.

    Article  Google Scholar 

  13. Bhatia L, Johri S, Ahmad R. An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express. 2012;2(1):1–19.

    Article  Google Scholar 

  14. Bohutskyi P, Bouwer E. Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. in: Advanced biofuels and bioproducts. Springer, 2013;873–975.

  15. Borines MG, de Leon RL, Cuello JL. Bioethanol production from the macroalgae Sargassum spp. Biores Technol. 2013;138:22–9.

    Article  CAS  Google Scholar 

  16. Brigljević B, Liu J, Lim H. Green energy from brown seaweed: sustainable polygeneration industrial process via fast pyrolysis of S. Japonica combined with the Brayton cycle. Energy Convers Manage. 2019;195:1244–54.

    Article  Google Scholar 

  17. Cai D, Hu S, Miao Q, Chen C, Chen H, Zhang C, Li P, Qin P, Tan T. Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth. Biores Technol. 2017;224:380–8.

    Article  CAS  Google Scholar 

  18. Chauton MS, Forbord S, Mäkinen S, Sarno A, Slizyte R, Mozuraityte R, Standal IB, Skjermo J. Sustainable resource production for manufacturing bioactives from micro‐and macroalgae: examples from harvesting and cultivation in the Nordic region. Physiol Plant. 2021.

  19. Chemodanov A, Jinjikhashvily G, Habiby O, Liberzon A, Israel A, Yakhini Z, Golberg A. Net primary productivity, biofuel production and CO2 emissions reduction potential of Ulva sp. (Chlorophyta) biomass in a coastal area of the Eastern Mediterranean. Energy Convers Manage. 2017;148:1497–507.

    Article  CAS  Google Scholar 

  20. Chen H, Zhou D, Luo G, Zhang S, Chen J. Macroalgae for biofuels production: progress and perspectives. Renew Sustain Energy Rev. 2015;47:427–37.

    Article  CAS  Google Scholar 

  21. Chen X, Mohammed S, Yang G, Qian T, Chen Y, Ma H, Xie Z, Zhang X, Simon GP, Wang H. Selective permeation of water through angstrom-channel graphene membranes for bioethanol concentration. Adv Mater. 2020;32(33):2002320.

    Article  CAS  Google Scholar 

  22. Chirapart A, Praiboon J, Puangsombat P, Pattanapon C, Nunraksa N. Chemical composition and ethanol production potential of Thai seaweed species. J Appl Phycol. 2014;26(2):979–86.

    Article  CAS  Google Scholar 

  23. Cho H, Ra C-H, Kim S-K. Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeasts. J Microbiol Biotechnol. 2014;24(2):264–9.

    Article  CAS  Google Scholar 

  24. Cho Y, Kim H, Kim S-K. Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast. Bioprocess Biosyst Eng. 2013;36(6):713–9.

    Article  CAS  Google Scholar 

  25. Cho Y, Kim M-J, Kim S-K. Ethanol production from seaweed, Enteromorpha intestinalis, by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) with Saccharomyces cerevisiae. Ksbb J. 2013;28(6):366–71.

    Article  Google Scholar 

  26. Choi W-Y, Kang D-H, Lee H-Y. Enhancement of the saccharification yields of Ulva pertusa kjellmann and rape stems by the high-pressure steam pretreatment process. Biotechnol Bioprocess Eng. 2013;18(4):728–35.

    Article  CAS  Google Scholar 

  27. Choi W, Han J, Lee C, Song C, Kim J, Seo Y, Lee S, Jung K, Kang D, Heo S. Bioethanol production from Ulva pertusa Kjellman by high-temperature liquefaction. Chem Biochem Eng Q. 2012;26(1):15–21.

    CAS  Google Scholar 

  28. Chowdhury H, Loganathan B, Mustary I, Alam F, Mobin SM. Algae for biofuels: the third generation of feedstock. in: Second and third generation of feedstocks. Elsevier, 2019;323–344.

  29. Chu Q, Song K, Bu Q, Hu J, Li F, Wang J, Chen X, Shi A. Two-stage pretreatment with alkaline sulphonation and steam treatment of Eucalyptus woody biomass to enhance its enzymatic digestibility for bioethanol production. Energy Convers Manage. 2018;175:236–45.

    Article  CAS  Google Scholar 

  30. Conde-Mejía C, Jiménez-Gutiérrez A. Analysis of ethanol dehydration using membrane separation processes. Open Life Sciences. 2020;15(1):122–32. Some major design aspects for membrane processes and their application to the ethanol dehydration problem are addressed in this work.

    Article  Google Scholar 

  31. Dahnum D, Tasum SO, Triwahyuni E, Nurdin M, Abimanyu H. Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch. Energy Procedia. 2015;68:107–16.

    Article  CAS  Google Scholar 

  32. Dai L, Jiang W, Zhou X, Xu Y. Enhancement in xylonate production from hemicellulose pre-hydrolysate by powdered activated carbon treatment. Bioresour Technol. 2020;316:123944.

  33. Dave N, Selvaraj R, Varadavenkatesan T, Vinayagam R. A critical review on production of bioethanol from macroalgal biomass. Algal Res. 2019;42:101606.

  34. El-Mekkawi SA, Abdo SM, Samhan FA, Ali GH. Optimization of some fermentation conditions for bioethanol production from microalgae using response surface method. Bull Natl Res Cent. 2019;43(1):1–8.

    Article  Google Scholar 

  35. El Harchi M, Kachkach FF, El Mtili N. Optimization of thermal acid hydrolysis for bioethanol production from Ulva rigida with yeast Pachysolen tannophilus. S Afr J Bot. 2018;115:161–9.

    Article  Google Scholar 

  36. Enquist-Newman M, Faust AME, Bravo DD, Santos CNS, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature. 2014;505(7482):239–43.

    Article  CAS  Google Scholar 

  37. Esmaeili SAH, Sobhani A, Szmerekovsky J, Dybing A, Pourhashem G. First-generation vs. second-generation: a market incentives analysis for bioethanol supply chains with carbon policies. Appl Energy. 2020a;277:115606.

  38. Esmaeili SAH, Szmerekovsky J, Sobhani A, Dybing A, Peterson TO. Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers. Energy Policy. 2020b;111222.

  39. Fakhrudin J, Setyaningsih D, Rahayuningsih M. Bioethanol production from seaweed Eucheuma cottonii by neutralization and detoxification of acidic catalyzed hydrolysate. Int J Environ Sci Dev. 2014;5(5):455.

    Article  CAS  Google Scholar 

  40. Fayaz M, Namitha K, Murthy KC, Swamy MM, Sarada R, Khanam S, Subbarao P, Ravishankar G. Chemical composition, iron bioavailability, and antioxidant activity of Kappaphycus alvarezzi (Doty). J Agric Food Chem. 2005;53(3):792–7.

    Article  CAS  Google Scholar 

  41. Fernand F, Israel A, Skjermo J, Wichard T, Timmermans KR, Golberg A. Offshore macroalgae biomass for bioenergy production: environmental aspects, technological achievements and challenges. Renew Sustain Energy Rev. 2017;75:35–45. This paper provides a review of macroalgae-based biorefineries with offshore cultivation and consequent biomass conversion into transportation liquid biofuels.

    Article  CAS  Google Scholar 

  42. Gao F, Gao L, Zhang D, Ye N, Chen S, Li D. Enhanced hydrolysis of Macrocystis pyrifera by integrated hydroxyl radicals and hot water pretreatment. Biores Technol. 2015;179:490–6.

    Article  CAS  Google Scholar 

  43. González-García S, Moreira MT, Feijoo G. Comparative environmental performance of lignocellulosic ethanol from different feedstocks. Renew Sustain Energy Rev. 2010;14(7):2077–85.

    Article  Google Scholar 

  44. Granjo JF, Nunes DS, Duarte BP, Oliveira NM. A comparison of process alternatives for energy-efficient bioethanol downstream processing. Sep Purif Technol. 2020;238:116414.

  45. Greetham D, Adams JM, Du C. The utilization of seawater for the hydrolysis of macroalgae and subsequent bioethanol fermentation. Sci Rep. 2020;10(1):1–15.

    Article  Google Scholar 

  46. Greetham D, Zaky A, Makanjuola O, Du C. A brief review on bioethanol production using marine biomass, marine microorganism and seawater. Curr Opin Green Sustain Chem. 2018;14:53–9.

    Article  Google Scholar 

  47. Gupta A, Verma JP. Sustainable bio-ethanol production from agro-residues: a review. Renew Sustain Energy Rev. 2015;41:550–67.

    Article  CAS  Google Scholar 

  48. Hai FI, Fattah KP, Saroj DP, Moreira MT. Membrane reactors for bioethanol production and processing. in: Membrane Reactors for Energy Applications and Basic Chemical Production. Woodhead Publishing Series in Energy. 2015;313–343; ISBN: 978–1–78242–223–5; https://doi.org/10.1016/B978-1-78242-223-5.00011-X.This study critically reviews the application of membrane technology in different steps of bioethanol production.

  49. Hargreaves PI, Barcelos CA, da Costa ACA, Pereira N Jr. Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies. Biores Technol. 2013;134:257–63.

    Article  CAS  Google Scholar 

  50. Hebbale D, Bhargavi R, Ramachandra T. Saccharification of macroalgal polysaccharides through prioritized cellulase producing bacteria. Heliyon. 2019;5(3), e01372.

  51. Hessami MJ, Cheng SF, Ambati RR, Yin YH, Phang SM. Bioethanol production from agarophyte red seaweed, Gelidium elegans, using a novel sample preparation method for analysing bioethanol content by gas chromatography. 3 Biotech. 2019;9(1), 25.

  52. Hessami MJ, Salleh A, Phang S-M. Bioethanol a by-product of agar and carrageenan production industry from the tropical red seaweeds, Gracilaria manilaensis and Kappaphycus alvarezii. Iran J Fish Sci. 2020;19(2):942–60.

    Google Scholar 

  53. Hong IK, Jeon H, Lee SB. Comparison of red, brown and green seaweeds on enzymatic saccharification process. J Ind Eng Chem. 2014;20(5):2687–91.

    Article  CAS  Google Scholar 

  54. Hong Y, Wu YR. Acidolysis as a biorefinery approach to producing advanced bioenergy from macroalgal biomass: a state-of-the-art review. Bioresour Technol. 2020;124080.

  55. İnan B, Özçimen D. A comparative study of bioprocess performance for improvement of bioethanol production from macroalgae. Chem Biochem Eng Q. 2019;33(1):133–40.

    Article  Google Scholar 

  56. Jambo SA, Abdulla R, Azhar SHM, Marbawi H, Gansau JA, Ravindra P. A review on third generation bioethanol feedstock. Renew Sustain Energy Rev. 2016;65:756–69.

    Article  CAS  Google Scholar 

  57. Jang JS, Cho Y, Jeong GT, Kim SK. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed. Saccharina Japonica Bioprocess Biosyst Eng. 2012;35(1–2):11–8.

    Article  CAS  Google Scholar 

  58. Karimi S, Karri RR, Yaraki MT, Koduru JR. Processes and separation technologies for the production of fuel-grade bioethanol: a review. Environ Chem Lett. 2021;1–18.

  59. Karimi S, Yaraki MT, Karri RR. A comprehensive review of the adsorption mechanisms and factors influencing the adsorption process from the perspective of bioethanol dehydration. Renew Sustain Energy Rev. 2019;107:535–53.

    Article  CAS  Google Scholar 

  60. Karray R, Hamza M, Sayadi S. Evaluation of ultrasonic, acid, thermo-alkaline and enzymatic pre-treatments on anaerobic digestion of Ulva rigida for biogas production. Biores Technol. 2015;187:205–13.

    Article  CAS  Google Scholar 

  61. Kaur S, Kaushal N, Oberoi HS, Phutela R. Comparative study of simultaneous saccharification and fermentation (SSF) and separate hydrolysis and fermentation (SHF) for rice wine production by Pichia kudriavezii. Int J Food Ferment Technol. 2018;8(1):45–50.

    Article  Google Scholar 

  62. Kaymak DB. Design and control of a separation process for bioethanol purification by reactive distillation. in: Comput Aided Chem Eng. Elsevier, 2017;40:1075–1080.

  63. Kaymak DB. Design and control of an alternative bioethanol purification process via reactive distillation from fermentation broth. Ind Eng Chem Res. 2019;58(4):1675–85.

    Article  CAS  Google Scholar 

  64. Khalid A, Aslam M, Qyyum MA, Faisal A, Khan AL, Ahmed F, Lee M, Kim J, Jang N, Chang IS. Membrane separation processes for dehydration of bioethanol from fermentation broths: recent developments, challenges, and prospects. Renew Sustain Energy Rev. 2019;105:427–43.

    Article  CAS  Google Scholar 

  65. Khammee P, Ramaraj R, Whangchai N, Bhuyar P, Unpaprom Y. The immobilization of yeast for fermentation of macroalgae Rhizoclonium sp. for efficient conversion into bioethanol. Biomass Convers Biorefin. 2021;11:827–35. This study shows enhanced fermentation by immobilization of yeast. Different physical, chemical, and biological pretreatment methods are compared in this study.

    Article  CAS  Google Scholar 

  66. Kim D-H, Lee S-B, Jeong G-T. Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis. Biores Technol. 2014;161:348–53.

    Article  CAS  Google Scholar 

  67. Kim GS, Shin MK, Kim YJ, Oh KK, Kim JS, Ryu HJ, Kim KH. Method of producing biofuel using sea algae, Google Patents. 2014b.

  68. Kim HM, Wi SG, Jung S, Song Y, Bae HJ. Efficient approach for bioethanol production from red seaweed Gelidium amansii. Biores Technol. 2015;175:128–34.

    Article  CAS  Google Scholar 

  69. Kim N-J, Li H, Jung K, Chang HN, Lee PC. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Biores Technol. 2011;102(16):7466–9.

    Article  CAS  Google Scholar 

  70. Kim SW, Kim YW, Hong CH, Lyo IW, Lim HD, Kim GJ, Shin HJ. Recombinant agarase increases the production of reducing sugars from HCl-treated Gracilaria verrucosa, a red algae. Algal Res. 2018;31:517–24.

    Article  Google Scholar 

  71. Korzen L, Pulidindi IN, Israel A, Abelson A, Gedanken A. Single step production of bioethanol from the seaweed Ulva rigida using sonication. RSC Adv. 2015;5(21):16223–9.

    Article  CAS  Google Scholar 

  72. Kostas ET, White DA, Cook DJ. Bioethanol production from UK seaweeds: investigating variable pre-treatment and enzyme hydrolysis parameters. Bioenerg Res. 2020;13(1):271–85.

    Article  CAS  Google Scholar 

  73. Kostas ET, White DA, Cook DJ. Development of a bio-refinery process for the production of speciality chemical, biofuel and bioactive compounds from Laminaria digitata. Algal Res. 2017;28:211–9.

    Article  Google Scholar 

  74. Kostas ET, White DA, Du C, Cook DJ. Selection of yeast strains for bioethanol production from UK seaweeds. J Appl Phycol. 2016;28(2):1427–41.

    Article  CAS  Google Scholar 

  75. Koupaie EH, Dahadha S, Lakeh AB, Azizi A, Elbeshbishy E. Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production—a review. J Environ Manage. 2019;233:774–84.

    Article  Google Scholar 

  76. Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Biores Technol. 2013;135:150–6.

    Article  CAS  Google Scholar 

  77. Kwon O-M, Kim D-H, Kim S-K, Jeong G-T. Production of sugars from macro-algae Gracilaria verrucosa using combined process of citric acid-catalyzed pretreatment and enzymatic hydrolysis. Algal Res. 2016;13:293–7.

    Article  Google Scholar 

  78. Lakatos GE, Ranglová K, Manoel JC, Grivalský T, Kopecký J, Masojídek J. Bioethanol production from microalgae polysaccharides. Folia Microbiol. 2019;1–18.

  79. Lee J, Li P, Lee J, Ryu HJ, Oh KK. Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Biores Technol. 2013;127:119–25.

    Article  CAS  Google Scholar 

  80. Lee S-M, Lee J-H. Ethanol fermentation for main sugar components of brown-algae using various yeasts. J Ind Eng Chem. 2012;18(1):16–8.

    Article  CAS  Google Scholar 

  81. Lee SY, Chang JH, Lee SB. Chemical composition, saccharification yield, and the potential of the green seaweed Ulva pertusa. Biotechnol Bioprocess Eng. 2014;19(6):1022–33.

    Article  CAS  Google Scholar 

  82. Li Y, Qi B, Wan Y. Separation of monosaccharides from pretreatment inhibitors by nanofiltration in lignocellulosic hydrolysate: fouling mitigation by activated carbon adsorption. Biomass and Bioenerg. 2020;136:105527.

  83. Liu CG, Li K, Wen Y, Geng BY, Liu Q, Lin YH. Bioethanol: new opportunities for an ancient product. in: Adv Bioenerg. Elsevier, 2019;4:1–34.

  84. Loow Y-L, Wu TY, Jahim JM, Mohammad AW, Teoh WH. Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose. 2016;23(3):1491–520.

    Article  CAS  Google Scholar 

  85. Luyben WL. Design and control of a pressure-swing distillation process with vapor recompression. Chem Eng Process Process Intensification. 2018;123:174–84.

    Article  CAS  Google Scholar 

  86. Maneein S, Milledge JJ, Nielsen BV, Harvey PJ. A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation. 2018;4(4):100.

    Article  CAS  Google Scholar 

  87. Manns D, Deutschle AL, Saake B, Meyer AS. Methodology for quantitative determination of the carbohydrate composition of brown seaweeds (Laminariaceae). RSC Adv. 2014;4(49):25736–46.

    Article  CAS  Google Scholar 

  88. Masarin F, Cedeno FRP, Chavez EGS, De Oliveira LE, Gelli VC, Monti R. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process. Biotechnol Biofuels. 2016;9(1):122.

    Article  Google Scholar 

  89. Matanjun P, Mohamed S, Mustapha NM, Muhammad K. Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J Appl Phycol. 2009;21(1):75–80.

    Article  CAS  Google Scholar 

  90. Maurya DP, Singla A, Negi S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech. 2015;5(5), 597–609.

  91. Meinita MDN, Kang JY, Jeong GT, Koo HM, Park SM, Hong YK. Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J Appl Phycol. 2012;24(4):857–62.

    Article  CAS  Google Scholar 

  92. Meinita MDN, Marhaeni B, Winanto T, Jeong GT, Khan MNA, Hong YK. Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J Appl Phycol. 2013;25(6):1957–61.

    Article  CAS  Google Scholar 

  93. Meng D, Dai Y, Xu Y, Wu Y, Cui P, Zhu Z, Ma Y, Wang Y. Energy, economic and environmental evaluations for the separation of ethyl acetate/ethanol/water mixture via distillation and pervaporation unit. Process Saf Environ Prot. 2020;140:14–25.

    Article  CAS  Google Scholar 

  94. Miao X, Xiao J, Xu Q, Fan S, Wang Z, Wang X, Zhang X. Distribution and species diversity of the floating green macroalgae and micro-propagules in the Subei Shoal, southwestern Yellow Sea. Peer J 2020;8:e10538.

  95. Mohr A, Raman S. Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy. 2013;63:114–22.

    Article  Google Scholar 

  96. Muktham R, Ball AS, Bhargava SK, Bankupalli S. Bioethanol production from non-edible de-oiled Pongamia pinnata seed residue-optimization of acid hydrolysis followed by fermentation. Ind Crops Prod. 2016;94:490–7.

    Article  CAS  Google Scholar 

  97. Nguyen TH, Sunwoo IY, Jeong G-T, Kim S-K. Detoxification of hydrolysates of the Red Seaweed Gelidium amansii for improved bioethanol production. Appl Biochem Biotechnol. 2019;188(4):977–90.

    Article  CAS  Google Scholar 

  98. Nunraksa N, Rattanasansri S, Praiboon J, Chirapart A. Proximate composition and the production of fermentable sugars, levulinic acid, and HMF from Gracilaria fisheri and Gracilaria tenuistipitata cultivated in earthen ponds. J Appl Phycol. 2019;31(1):683–90.

    Article  CAS  Google Scholar 

  99. Obata O, Akunna J, Bockhorn H, Walker G. Ethanol production from brown seaweed using non-conventional yeasts. Bioethanol. 2016;1(open-issue), 134–145.

  100. Offei F, Mensah M, Kemausuor F. Cellulase and acid-catalysed hydrolysis of Ulva fasciata, Hydropuntia dentata and Sargassum vulgare for bioethanol production. SN Appl Sci. 2019;1(11):1469.

    Article  Google Scholar 

  101. Offei F, Mensah M, Thygesen A, Kemausuor F. Seaweed bioethanol production: a process selection review on hydrolysis and fermentation. Fermentation. 2018;4(4):99.

    Article  CAS  Google Scholar 

  102. Oo NMM, Kywe TT. Preparation of bioethanol from brown seaweed (Sargassum Sp.). 2019.

  103. Pablo G, Domínguez E, Domínguez VD, Romaní A, Domingues L, Garrote G. Third generation bioethanol from invasive macroalgae Sargassum muticum using autohydrolysis pretreatment as first step of a biorefinery. Renew Energy. 2019;141:728–35.

    Article  Google Scholar 

  104. Pablo G, Gomes-Dias JS, Rocha CM, Romaní A, Garrote G, Domingues L. Recent trends on seaweed fractionation for liquid biofuels production. Bioresour Technol. 2020;299:122613.

  105. Park EY, Park JK. Enzymatic saccharification of Laminaria japonica by cellulase for the production of reducing sugars. Energies. 2020;13(3):763.

    Article  CAS  Google Scholar 

  106. Park EY, Park JK. Hydrochloric acid-catalyzed hydrothermal pretreatment of brown seaweed residues for enhancing biofuel production. BioResources. 2020;15(1):1629–40.

    CAS  Google Scholar 

  107. Park J-H, Hong J-Y, Jang HC, Oh SG, Kim S-H, Yoon J-J, Kim YJ. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Biores Technol. 2012;108:83–8.

    Article  CAS  Google Scholar 

  108. Popescu AEP, Pellin JL, Bonet-Ruiz J, Llorens J. Cleaner process and entrainer screening for bioethanol dehydration by heterogeneous azeotropic distillation. Chem Eng Trans. 2020;81:829–34.

    Google Scholar 

  109. Popper ZA, Ralet M-C, Domozych DS. Plant and algal cell walls: diversity and functionality. Ann Bot. 2014;114(6):1043–8.

    Article  CAS  Google Scholar 

  110. Qarri A, Israel A. Seasonal biomass production, fermentable saccharification and potential ethanol yields in the marine macroalga Ulva sp. (Chlorophyta). Renew Energy. 2020;145:2101–7. The article reports production of biomass from Ulva sp. cultured in a tank throughout the year. The optimization of reducing sugar was studied with chemical and enzymatic hydrolysis processes for subsequent fermentation to produce bioethanol.

    Article  CAS  Google Scholar 

  111. Qi F, Pei H, Hu W, Mu R, Zhang S. Characterization of a microalgal mutant for CO2 biofixation and biofuel production. Energy Convers Manage. 2016;122:344–9.

    Article  CAS  Google Scholar 

  112. Qiu J, Tian D, Shen F, Hu J, Zeng Y, Yang G, Zhang Y, Deng S, Zhang J. Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings. Biores Technol. 2018;268:355–62.

    Article  CAS  Google Scholar 

  113. Qiu W, Chen H. Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment. Biores Technol. 2012;118:8–12.

    Article  CAS  Google Scholar 

  114. Ra CH, Jeong GT, Shin MK, Kim SK. Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Biores Technol. 2013;140:421–5.

    Article  CAS  Google Scholar 

  115. Ra CH, Kang CH, Jeong GT, Kim SK. Bioethanol production from the waste product of salted Undaria pinnatifida using laboratory and pilot development unit (PDU) scale fermenters. Biotechnol Bioprocess Eng. 2014;19(6):984–8.

    Article  CAS  Google Scholar 

  116. Ra CH, Kim SK. Optimization of pretreatment conditions and use of a two-stage fermentation process for the production of ethanol from seaweed. Saccharina Japonica Biotechnol Bioprocess Eng. 2013;18(4):715–20.

    Article  CAS  Google Scholar 

  117. Ra CH, Sunwoo IY, Kim SK. Bioethanol production from macroalgal biomass. J Life Sci. 2016;26(8):976–82.

    Article  Google Scholar 

  118. Raheem A, Prinsen P, Vuppaladadiyam AK, Zhao M, Luque R. A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J Clean Prod. 2018;181:42–59.

    Article  CAS  Google Scholar 

  119. Ramachandra T, Hebbale D. Bioethanol from macroalgae: prospects and challenges. Renew Sustain Energy Rev. 2020;117:109479. This article describes selection of macroalgae feedstock for bioethanol production in terms of biochemical composition. In addition, this article compares chemical and biological pretreatment methods for production of reducing sugar from macroalgae feedstock.

  120. Ramaraj R, Unpaprom Y. Enzymatic hydrolysis of small-flowered nutsedge (Cyperus difformis) with alkaline pretreatment for bioethanol production. Maejo Int J Sci Technol. 2019;13(2):110–20.

    CAS  Google Scholar 

  121. Ravanal MC, Camus C, Buschmann AH, Gimpel J, Olivera-Nappa Á, Salazar O, Lienqueo ME. Production of bioethanol from brown algae. in: Advances in Feedstock Conversion Technologies for Alternative Fuels and Bioproducts. Elsevier, 2019;69–88.

  122. Rhein-Knudsen N, Ale MT, Meyer AS. Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs. 2015;13(6):3340–59.

    Article  Google Scholar 

  123. Ritslaid K, Küüt A, Olt J. State of the art in bioethanol production. Agron Res. 2010;8(1):236–54.

    Google Scholar 

  124. Rizza LS, Smachetti MES, Do Nascimento M, Salerno GL, Curatti L. Bioprospecting for native microalgae as an alternative source of sugars for the production of bioethanol. Algal Res. 2017;22:140–7.

    Article  Google Scholar 

  125. Rodrigues KC, Sonego JL, Cruz AJ, Bernardo A, Badino AC. Modeling and simulation of continuous extractive fermentation with CO2 stripping for bioethanol production. Chem Eng Res Des. 2018;132:77–88.

    Article  CAS  Google Scholar 

  126. Ryu HJ, Oh KK. Combined de-algination process as a fractionation strategy for valorization of brown macroalga Saccharina japonica. Appl Biochem Biotechnol. 2017;182(1):238–49.

    Article  CAS  Google Scholar 

  127. Saha K, Sikder J, Chakraborty S, da Silva SS, dos Santos JC. Membranes as a tool to support biorefineries: applications in enzymatic hydrolysis, fermentation and dehydration for bioethanol production. Renew Sustain Energy Rev. 2017;74:873–90. This article demonstrates the applications of membrane-based separation techniques in enzymatic hydrolysis, fermentation, and in biorefinary processes for purification of bioethanol.

    Article  CAS  Google Scholar 

  128. Saravanan K, Duraisamy S, Ramasamy G, Kumarasamy A, Balakrishnan S. Evaluation of the saccharification and fermentation process of two different seaweeds for an ecofriendly bioethanol production. Biocatal Agric Biotechnol. 2018;14:444–9.

    Article  Google Scholar 

  129. Sawin JL, Sverrisson F, Rutovitz J, Dwyer S, Teske S, Murdock HE, Adib R, Guerra F, Blanning LH, Hamirwasia V. Renewables 2018-global status report. A comprehensive annual overview of the state of renewable energy. Advancing the global renewable energy transition-Highlights of the REN21. Renew 2018 Global Status Report in Perspective. 2018.

  130. Senatore A, Dalena F, Basile A. Novel bioethanol production processes and purification technology using membranes. in: Stud Surf Sci Catal. Elsevier, 2019;179:359–384.

  131. Shokrkar H, Ebrahimi S, Zamani M. Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel. 2017;200:380–6.

    Article  CAS  Google Scholar 

  132. Sivaramakrishnan R, Incharoensakdi A. Utilization of microalgae feedstock for concomitant production of bioethanol and biodiesel. Fuel. 2018;217:458–66.

    Article  CAS  Google Scholar 

  133. Smachetti MES, Rizza LS, Coronel CD, Do Nascimento M, Curatti L. Microalgal biomass as an alternative source of sugars for the production of bioethanol. Principles Appl Fermentation Technol. 2018;351.

  134. Soliman R, Younis S, El-Gendy NS, Mostafa S, El-Temtamy S, Hashim A. Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae. J Appl Microbiol. 2018;125(2):422–40.

    Article  CAS  Google Scholar 

  135. Sudhakar M, Arunkumar K, Perumal K. Pretreatment and process optimization of spent seaweed biomass (SSB) for bioethanol production using yeast (Saccharomyces cerevisiae). Renew Energy. 2020;153:456–71. This study describes reducing sugar production from red macroalgae to produce bioethanol during fermentation process using two different yeasts.

    Article  CAS  Google Scholar 

  136. Sudhakar M, Jegatheesan A, Poonam C, Perumal K, Arunkumar K. Biosaccharification and ethanol production from spent seaweed biomass using marine bacteria and yeast. Renew Energy. 2017;105:133-139.

  137. Suganya T, Varman M, Masjuki H, Renganathan S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sustain Energy Rev. 2016;55:909–41.

    Article  CAS  Google Scholar 

  138. Sukwong P, Sunwoo IY, Lee MJ, Ra CH, Jeong G-T, Kim S-K. Application of the severity factor and HMF removal of red macroalgae Gracilaria verrucosa to production of bioethanol by Pichia stipitis and Kluyveromyces marxianus with adaptive evolution. Appl Biochem Biotechnol. 2019;187(4):1312–27.

    Article  CAS  Google Scholar 

  139. Sunwoo I, Kwon JE, Jeong G-T, Kim S-K. Optimization of hyper-thermal acid hydrolysis and enzymatic saccharification of Ascophyllum nodosum for ethanol production with mannitol-adapted yeasts. Bioprocess Biosyst Eng. 2019;42(8):1255–62.

    Article  CAS  Google Scholar 

  140. Sydney EB, Letti LAJ, Karp SG, Sydney ACN, de Souza Vandenberghe LP, de Carvalho JC, Woiciechowski AL, Medeiros ABP, Soccol VT, Soccol CR. Current analysis and future perspective of reduction in worldwide greenhouse gases emissions by using first and second generation bioethanol in the transportation sector. Bioresour Technol Reports. 2019;7:100234.

  141. Tan IS, Lam MK, Foo HCY, Lim S, Lee KT. Advances of macroalgae biomass for the third generation of bioethanol production. Chin J Chem Eng. 2020;28(2):502–17.

    Article  CAS  Google Scholar 

  142. Tan IS, Lam MK, Foo HCY, Lim S, Lee KT. Advances of macroalgae biomass for the third generation of bioethanol production. Chin J Chem Eng. 2019.

  143. Tan IS, Lee KT. Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production: an optimization study. Energy. 2014;78:53–62.

    Article  CAS  Google Scholar 

  144. Tan IS, Lee KT. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol. Carbohyd Polym. 2015;124:311–21.

    Article  CAS  Google Scholar 

  145. Teh YY, Lee KT, Chen W-H, Lin S-C, Sheen H-K, Tan IS. Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery. Biores Technol. 2017;246:20–7.

    Article  CAS  Google Scholar 

  146. Trivedi J, Aila M, Bangwal D, Kaul S, Garg M. Algae based biorefinery—how to make sense? Renew Sustain Energy Rev. 2015;47:295–307.

    Article  CAS  Google Scholar 

  147. Trivedi N, Baghel RS, Bothwell J, Gupta V, Reddy C, Lali AM, Jha B. An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Sci Rep. 2016;6:30728.

    Article  CAS  Google Scholar 

  148. Trivedi N, Gupta V, Reddy C, Jha B. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Biores Technol. 2013;150:106–12.

    Article  CAS  Google Scholar 

  149. Vu PT, Unpaprom Y, Ramaraj R. Impact and significance of alkaline-oxidant pretreatment on the enzymatic digestibility of Sphenoclea zeylanica for bioethanol production. Biores Technol. 2018;247:125–30.

    Article  CAS  Google Scholar 

  150. Wadi A, Ahmad A, Tompo M, Hasyim H, Tuwo A, Nakajima M, Karim H. Production of bioethanol from seaweed, Gracilaria verrucosa and eucheuma cottonii, by simultaneous saccharification and fermentation methods. J Phys: Conf Ser. IOP Publishing. 2019;032031.

  151. Wang X, Liu X, Wang G. Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation F. J Integr Plant Biol. 2011;53(3):246–52.

    Article  CAS  Google Scholar 

  152. Wei P, Cheng L-H, Zhang L, Xu X-H, Chen H-L, Gao C-J. A review of membrane technology for bioethanol production. Renew Sustain Energy Rev. 2014;30:388–400.

    Article  CAS  Google Scholar 

  153. Widyaningrum T. Production of bioethanol from the hydrolysate of brown seaweed (Sargassum crassifolium) using a naturally β-glucosidase producing yeast Saccharomyces cereviceae JCM 3012. Biosci, Biotechnol Res Asia. 2016;13(3):1333–40.

    Article  Google Scholar 

  154. Wu F-C, Wu J-Y, Liao Y-J, Wang M-Y, Shih L. Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Biores Technol. 2014;156:123–31.

    Article  CAS  Google Scholar 

  155. Yazdani P, Zamani A, Karimi K, Taherzadeh MJ. Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production. Biores Technol. 2015;176:196–202.

    Article  CAS  Google Scholar 

  156. Yu KL, Chen WH, Sheen HK, Chang JS, Lin CS, Ong HC, Show PL, Ling TC. Bioethanol production from acid pretreated microalgal hydrolysate using microwave-assisted heating wet torrefaction. Fuel. 2020;279:118435.

  157. Yuan Y, Macquarrie DJ. Microwave assisted acid hydrolysis of brown seaweed Ascophyllum nodosum for bioethanol production and characterization of alga residue. ACS Sustain Chem Eng. 2015;3(7):1359–65.

    Article  CAS  Google Scholar 

  158. Yuan Z, Wen Y, Li G. Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment. Biores Technol. 2018;259:228–36.

    Article  CAS  Google Scholar 

  159. Yun EJ, Kim HT, Cho KM, Yu S, Kim S, Choi I-G, Kim KH. Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Biores Technol. 2016;199:311–8.

    Article  CAS  Google Scholar 

  160. Zeb H, Choi J, Kim Y, Kim J. A new role of supercritical ethanol in macroalgae liquefaction (Saccharina japonica): understanding ethanol participation, yield, and energy efficiency. Energy. 2017;118:116–26.

    Article  CAS  Google Scholar 

  161. Zhao Y, Ma K, Bai W, Du D, Zhu Z, Wang Y, Gao J. Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol. Energy. 2018;148:296–308.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been carried out with the support of a UOW-HEC joint scholarship to Naveed Ahmed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal I. Hai.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Amount of cellulose, alginate, and mannitol in algae govern sugar/ethanol production.

• Pretreatment changes substrate structure to release sugar polymers for easy hydrolysis.

• Enzymatic hydrolysis produces less fermentation inhibitors than acid/alkali treatment.

• Enzyme selection with respect to macroalgae composition is crucial to enhance yield.

• Simultaneous rather than separate hydrolysis and fermentation yield higher bioethanol.

This article is part of the Topical Collection on Biology and Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N., Dhar, B.R., Pramanik, B.K. et al. A Cookbook for Bioethanol from Macroalgae: Review of Selecting and Combining Processes to Enhance Bioethanol Production. Curr Pollution Rep 7, 476–493 (2021). https://doi.org/10.1007/s40726-021-00202-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-021-00202-7

Keywords

Navigation