Skip to main content

Advertisement

Log in

Bioceramic Coatings on Magnesium Alloys

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Magnesium (Mg)-based materials have attracted interest as for its use as a biodegradable metallic implant material. However, one of the main challenges in the use of magnesium and its alloys for biomedical applications is its poor corrosion resistance in physiological environments. Surface coatings to control biodegradation of magnesium offer the flexibility to be easily modified for specific applications and have significantly less investment. Hydroxyapatite-based bioceramic coatings on metallic implants have been favorably viewed because of its excellent bioactivity and biocompatibility and the fact that the composition of hydroxyapatite is similar to that of natural bone. In this manuscript, we discuss the context of magnesium as biodegradable metal, current challenges on use of magnesium-based materials for biomedical applications. Focusing specifically on orthopedic applications, we elaborate on calcium phosphate-based bioceramic coatings. Recent work on hydroxyapatite coatings on magnesium, fabrication process and the biological response of the coatings are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from ref [45]. Open access article distributed under the Creative Commons Attribution License

Fig. 2

Adapted from Ref. [83] copyright Wiley

Fig. 3

Adapted from Ref. [88] copyright Elsevier

Fig. 4

Adapted from Ref. [89] copyright Elsevier

Similar content being viewed by others

References

  1. Wong HM, Yeung KW, Lam KO, Tam V, Chu PK, Luk KD et al (2010) A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 31(8):2084–2096

    Article  Google Scholar 

  2. Frosch K-H, Stürmer K (2006) Metallic Biomaterials in Skeletal Repair. Eur J Trauma 32(2):149–159

    Article  Google Scholar 

  3. Gehrig LMB (2011) Orthopedic surgery. Am J Surg 202(3):364–368

    Article  Google Scholar 

  4. Scholz MS, Blanchfield JP, Bloom LD, Coburn BH, Elkington M, Fuller JD et al (2011) The use of composite materials in modern orthopaedic medicine and prosthetic devices: a review. Compos Sci Technol 71(16):1791–1803

    Article  Google Scholar 

  5. Iizuka T, Hallermann W, Seto I, Smolka W (2006) A titanium arch bar for maxillomandibular fixation in oral and maxillofacial surgery. J Oral Maxillofac Surg 64(6):989–992

    Article  Google Scholar 

  6. Koul S, Moliterno DJ (2009) Bare-metal versus drug-eluting stent placement among patients presenting with anemia. JACC Cardiovasc Interv 2(4):337–338

    Article  Google Scholar 

  7. Bhure R, Mahapatro A, Bonner C, Abdel-Fattah TM (2013) In vitro stability study of organophosphonic self assembled monolayers (SAMs) on cobalt chromium (Co–Cr) alloy. Mater Sci Eng, C 33(4):2050–2058

    Article  Google Scholar 

  8. Abdel-Fattah TM, Loftis D, Mahapatro A (2011) Nanosized controlled surface pretreatment of biometallic alloy 316L stainless steel. J Biomed Nanotechnol 7(6):794–800

    Article  Google Scholar 

  9. Bhure R, Abdel-Fattah TM, Bonner C, Hall JC, Mahapatro A (2010) Formation of nanosized phosphonic acid self assembled monolayers on cobalt-chromium alloy for potential biomedical applications. J Biomed Nanotechnol 6:117–128

    Article  Google Scholar 

  10. Puleo DA, Huh WW (1995) Acute toxicity of metal ions in cultures of osteogenic cells derived from bone marrow stromal cells. J Appl Biomater Off J Soc Biomater 6(2):109–116

    Article  Google Scholar 

  11. Kulshrestha AS, Mahapatro LA, Henderson LA (2012) Biomaterials. ACS Symposium Series. Oxford University Press, Oxford

    Google Scholar 

  12. Matos TD, King N, Simmons L, Walker C, McClain AR, Mahapatro A et al (2011) Microwave assisted lipase catalyzed solvent-free poly-caprolactone synthesis. Green Chem Lett 4(1):73–79

    Article  Google Scholar 

  13. Mahapatro A, Matos Negrón TD (2013) Biodegradable poly-pentadecalactone (PDL) synthesis via synergistic lipase and microwave catalysis. Am J Biomed Eng 3(1):9–13

    Google Scholar 

  14. Mahapatro A, Matos Negrón TD (2013) Microwave-assisted biocatalytic polymerizations. In: Green polymer chemistry: biocatalysis and materials II, vol 1144. American Chemical Society, pp 69–80

  15. Smith EJ, Jain AK, Rothman MT (2006) New Developments in Coronary Stent Technology. J Interv Cardiol 19(6):493–499

    Article  Google Scholar 

  16. Erne P, Schier M, Resink T (2006) The road to bioabsorbable stents: reaching clinical reality? CardioVasc Interv Radiol 29(1):11–16

    Article  Google Scholar 

  17. Ron W (2006) Update on bioabsorbable stents: from bench to clinical. J Interv Cardiol 19(5):414–421

    Article  Google Scholar 

  18. Mahapatro A, Malladi L (2016) Fabrication of hybrid polymeric-metallic foams as scaffolds for bone tissue engineering. Soc Plast Eng ANTEC 2016:1861–1864

    Google Scholar 

  19. Waizy H, Seitz J-M, Reifenrath J, Weizbauer A, Bach F-W, Meyer-Lindenberg A et al (2013) Biodegradable magnesium implants for orthopedic applications. J Mater Sci 48(1):39–50

    Article  Google Scholar 

  20. Mahapatro A, Matos Negron TD, Gomes AS (2016) Nanostructured self assembled monolayers on magnesium for improved biological performance. Mater Technol 31(13):818–827

    Article  Google Scholar 

  21. Mahapatro A (2015) Bio-functional nano-coatings on metallic biomaterials. Mater Sci Eng, C 55:227–251

    Article  Google Scholar 

  22. Mahapatro A, Taina M, Nguyen A (2015) Spectroscopic evaluations of interfacial oxidative stability of phosphonic nanocoatings on magnesium. J Spectrosc 2015:8

    Article  Google Scholar 

  23. Mahapatro A, Negron TMD, Arshanapalli SA, Gomes AS, Yao L (2015) Fabrication, biofunctionality and biocompatibility evaluations of octadecyltrichlorosilane nano coatings on magnesium alloy. J Nanoeng Nanomanuf 5(4):294–303

    Article  Google Scholar 

  24. Mahapatro A, Kumar SS (2015) Determination of ionic liquid and magnesium compatibility via microscopic evaluations. J Adv Microsc Res 10(2):89–92

    Article  Google Scholar 

  25. Bontrager J, Mahapatro A, Gomes AS (2014) Microscopic bio-corrosion evaluations of magnesium surfaces in static and dynamic conditions. J Microsc 255(2):104–115

    Google Scholar 

  26. Mahapatro A (2012) Metals for biomedical applications and devices. J Biomater Tissue Eng 2(4):259–268

    Article  Google Scholar 

  27. Li Z, Gu X, Lou S, Zheng Y (2008) The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29(10):1329–1344

    Article  Google Scholar 

  28. Gu X, Zheng Y, Cheng Y, Zhong S, Xi T (2009) In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 30(4):484–498

    Article  Google Scholar 

  29. Mehta DS, Masood SH, Song WQ (2004) Investigation of wear properties of magnesium and aluminum alloys for automotive applications. J Mater Process Technol 155–156:1526–1531

    Article  Google Scholar 

  30. Yang Z, Li JP, Zhang JX, Lorimer GW, Robson J (2008) Review on research and development of magnesium alloys. Acta Metall Sinica (English Lett) 21(5):313–328

    Article  Google Scholar 

  31. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734

    Article  Google Scholar 

  32. Yang J, Cui F-Z, Lee IS, Wang X (2010) Plasma surface modification of magnesium alloy for biomedical application. Surf Coat Technol 205, Supplement 1:S182–S187

    Article  Google Scholar 

  33. Vormann J (2003) Magnesium: nutrition and metabolism. Mol Asp Med 24(1–3):27–37

    Article  Google Scholar 

  34. Okuma T (2001) Magnesium and bone strength. Nutrition 17(7–8):679–680

    Article  Google Scholar 

  35. Harrison R, Maradze D, Lyons S, Zheng Y, Liu Y (2014) Corrosion of magnesium and magnesium–calcium alloy in biologically-simulated environment. Prog Nat Sci Mater Int 24(5):539–546

    Article  Google Scholar 

  36. Meyer U, Büchter A, Wiesmann HP, Joos U, Jones DB (2005) Basic reactions of osteoblasts on structured material surfaces. Eur Cells Mater 9:39–49

    Article  Google Scholar 

  37. Oryan A, Alidadi S, Moshiri A, Maffulli N (2014) Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 9(1):1–27

    Article  Google Scholar 

  38. Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng R Rep 77:1–34

    Article  Google Scholar 

  39. Maguire M, Cowan J (2002) Magnesium chemistry and biochemistry. Biometals 15(3):203–210

    Article  Google Scholar 

  40. Avedesian MM, Baker H (1999) Magnesium and magnesium alloys. ASM International, Materials Parks, p 10

    Google Scholar 

  41. Avedesian MM, Baker H, Committee AIH (1999) Magnesium and magnesium alloys. Mater Information Society, ASM International

    Google Scholar 

  42. Guo KW (2010) A review of magnesium/magnesium alloys corrosion and its protection. Recent Pat Corros Sci 2:13–21

    Article  Google Scholar 

  43. I.J P. 5 - Magnesium alloys. Light Alloys (Fourth Edition). Oxford: Butterworth-Heinemann; 2005. p. 237–97

  44. Watarai H (2006) Trend of research and development for magnesium alloys: reducing the weight of structural materials in motor vehicles. Sci Technol Trends 18:84–97

    Google Scholar 

  45. Mezbahul-Islam M, Mostafa AO, Medraj M (2014) Essential magnesium alloys binary phase diagrams and their thermochemical data. J Mater 2014:33

    Google Scholar 

  46. Mahapatro A, Matos Negrón TD, Bonner C, Abdel-Fattah TM (2013) Nanolayers on magnesium (Mg) alloy for metallic bone tissue engineering scaffolds. J Biomater Tissue Eng 3(2):196–204

    Article  Google Scholar 

  47. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ et al (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26(17):3557–3563

    Article  Google Scholar 

  48. Witte F, Fischer J, Nellesen J, Crostack H-A, Kaese V, Pisch A et al (2006) In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27(7):1013–1018

    Article  Google Scholar 

  49. Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R et al (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12(5–6):63–72

    Article  Google Scholar 

  50. Song G, Atrens A (2007) Recent insights into the mechanism of magnesium corrosion and research suggestions. Adv Eng Mater 9(3):177–183

    Article  Google Scholar 

  51. Ducheyne P, Qiu Q (1999) Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20(23–24):2287–2303

    Article  Google Scholar 

  52. Atrens A, Song G-L, Liu M, Shi Z, Cao F, Dargusch MS (2015) Review of recent developments in the field of magnesium corrosion. Adv Eng Mater 17(4):400–453

    Article  Google Scholar 

  53. Hänzi AC, Gunde P, Schinhammer M, Uggowitzer PJ (2009) On the biodegradation performance of an Mg–Y–RE alloy with various surface conditions in simulated body fluid. Acta Biomater 5(1):162–171

    Article  Google Scholar 

  54. Kirkland NT, Birbilis N, Staiger MP (2012) Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater 8(3):925–936

    Article  Google Scholar 

  55. Hornberger H, Virtanen S, Boccaccini AR (2012) Biomedical coatings on magnesium alloys - a review. Acta Biomater 8(7):2442–2455

    Article  Google Scholar 

  56. Shashikala AR, Umarani R, Mayanna SM, Sharma AK (2008) Chemical conversion coatings on magnesium alloys: a comparative study. Int J Electrochem Sci 3:993–1004

    Google Scholar 

  57. Mahapatro A, Hakim J, Crane JB, Kumar SS (2013) Electrodeposition of niobium on magnesium using green ionic liquids. ECS Trans 53(19):77–81

    Article  Google Scholar 

  58. Song YW, Shan DY, Han EH (2008) Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater Lett 62(17):3276–3279

    Article  Google Scholar 

  59. Oosterbeek RN, Seal CK, Seitz J-M, Hyland MM (2013) Polymer–bioceramic composite coatings on magnesium for biomaterial applications. Surf Coat Technol 236:420–428

    Article  Google Scholar 

  60. Yamamoto A, Terawaki T, Tsubakino H (2008) Microstructures and corrosion properties on fluoride treated magnesium alloy. Mater Trans 49(7):1042–1044

    Article  Google Scholar 

  61. Gray JE, Luan B (2002) Protective coatings on magnesium and its alloys — a critical review. J Alloys Compd 336(1–2):88–113

    Article  Google Scholar 

  62. Mantripragada VP, Lecka-Czernik B, Ebraheim NA, Jayasuriya AC (2013) An overview of recent advances in designing orthopedic and craniofacial implants. J Biomed Mater Res, Part A 101(11):3349–3364

    Google Scholar 

  63. Dorozhkin SV (2007) Bioceramics based on calcium orthophosphates (Review). Glass Ceram 64(11):442–447

    Article  Google Scholar 

  64. Kay MI, Young RA, Posner AS (1964) Crystal structure of hydroxyapatite. Nature 204:1050–1052

    Article  Google Scholar 

  65. Morgan H, Wilson RM, Elliott JC, Dowker SE, Anderson P (2000) Preparation and characterisation of monoclinic hydroxyapatite and its precipitated carbonate apatite intermediate. Biomaterials 21(6):617–627

    Article  Google Scholar 

  66. Silva RV, Camilli JA, Bertran CA, Moreira NH (2005) The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats. Int J Oral Maxillofac Surg 34(2):178–184

    Article  Google Scholar 

  67. Deram V, Minichiello C, Vannier R, Le Maguer A, Murano D (2003) Microstructural characterizations of plasma sprayed hydroxyapatite coatings. Surf Coat Technol 166:153–159

    Article  Google Scholar 

  68. Oryan A, Meimandi-Parizi A, Shafiei-Sarvestani Z, Bigham AS (2012) Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: radiological, macroscopical, hidtopathological and biomechanical evaluation. Cell Tissue Bank 13(4):639–651

    Article  Google Scholar 

  69. Kikuchi M (2013) Hydroxyapatite/collagen bone-like nanocomposite. Biol Pharm Bull 36(11):1666–1669

    Article  Google Scholar 

  70. Burg KJL, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21(23):2347–2359

    Article  Google Scholar 

  71. Narasaraju TSB, Phebe DE (1996) some physic-chemical aspects of hydroxyapatite. J Mater Sci Lett 31:1–21

    Article  Google Scholar 

  72. Evans GP, Behiri JC, Currey JD, Bonfield W (1990) Microhardness and Young’s modulus in cortical bone exhibiting a wide range of mineral volume fractions, and in a bone analogue. J Mater Sci Mater Med 1(1):38–43

    Article  Google Scholar 

  73. Aoki H (1991) Science and medical applications of hydroxyapatite. Japanese Association of Apatite Science

  74. Athanasou NA (1999) Color atlas of bone, joint, and soft tissue pathology of metals and semiconductors from ionic liquids. Electrochem Act 48:3053–3061

    Google Scholar 

  75. Buma P, Van Loon PJM, Versleyen H, Weinans H, Slooff H, De Groot K, Huiskes R (1997) Histological and biomechanical analysis of bone and interface reactions around hydroxyapatite-coated intramedullary implants of different stiffness. Biomaterials 18(9):1251–1260

    Article  Google Scholar 

  76. Ducheyne P, Beight J, Cuckler J, Evans B, Radin S (1990) Effect of calcium phosphate coating characteristics on early post-operative bone tissue ingrowth. Biomaterials 11(8):531–540

    Article  Google Scholar 

  77. Hench LL, Wilson J (1993) An Introduction to Bioceramics. World Scientific Publishing Company Incorporated, Singapore

    Book  Google Scholar 

  78. Morks MF, Kobayashi A (2007) Effect of gun current on the microstructure and crystallinity of plasma sprayed hydroxyapatite coatings. Appl Surf Sci 253(17):7136–7142

    Article  Google Scholar 

  79. Morks MF, Kobayashi A (2006) Influence of gas flow rate on the microstructure and mechanical properties of hydroxyapatite coatings fabricated by gas tunnel type plasma spraying. Surf Coat Technol 201(6):2560–2566

    Article  Google Scholar 

  80. Surmenev RA (2012) A review of plasma-assisted methods for calcium phosphate-based coatings fabrication. Surf Coat Technol 206(8–9):2035–2056

    Article  Google Scholar 

  81. Sun L, Berndt CC, Gross KA, Kucuk A (2001) Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J Biomed Mater Res 58(5):570–592

    Article  Google Scholar 

  82. Davis JR (2004) Handbook of thermal spray technology. ASM International, Russell Township

    Google Scholar 

  83. Gray-Munro JE, Strong M (2009) The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31. J Biomed Mater Res, Part A 90A(2):339–350

    Article  Google Scholar 

  84. Song YL, Liu YH, Wang SH, Yu SR, Zhu XY (2007) Effect of cerium addition on microstructure and corrosion resistance of die cast AZ91 magnesium alloy. Mater Corros 58(3):189–192

    Article  Google Scholar 

  85. Tampieri A, Celotti G, Sprio S, Mingazzini C (2000) Characteristics of synthetic hydroxyapatites and attempts to improve their thermal stability. Mater Chem Phys 64(1):54–61

    Article  Google Scholar 

  86. Rojaee R, Fathi M, Raeissi K (2013) Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments. Appl Surf Sci 285, Part B:664–673

    Article  Google Scholar 

  87. Cheang P, Khor KA (1995) Thermal spraying of hydroxyapatite (HA) coatings: effects of powder feedstock. J Mater Process Technol 48(1):429–436

    Article  Google Scholar 

  88. Li J, Song Y, Zhang S, Zhao C, Zhang F, Zhang X et al (2010) In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg–Zn alloy. Biomaterials 31(22):5782–5788

    Article  Google Scholar 

  89. Xu L, Pan F, Yu G, Yang L, Zhang E, Yang K (2009) In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials 30(8):1512–1523

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Mahapatro.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatro, A., Arshanapalli, S.A. Bioceramic Coatings on Magnesium Alloys. J Bio Tribo Corros 3, 37 (2017). https://doi.org/10.1007/s40735-017-0099-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-017-0099-7

Keywords

Navigation