Skip to main content
Log in

Enhanced Corrosion Properties of Nanostructured 316 Stainless Steel in 0.6 M NaCl Solution

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Surface modification through surface mechanical attrition treatment (SMAT) process and annealing were employed to enhance the corrosion properties of 316 stainless steel (SS) in 0.6 M NaCl. SMAT resulted in the formation of a nanocrystalline layer on 316 SS with an average grain size of 20 nm at the depth of about 30 µm from the treated surface. The nanocrystalline microstructure of the surface was characterized by X-ray diffraction and scanning electron microscopy. The micro-hardness of the surface layer of the treated sample was higher than that of the as-received sample by about 100 HV (Vickers hardness) at a depth of 200 µm from the treated surface. By the combined effect of SMAT and low-temperature annealing treatment at 400 °C, the electrochemical tests revealed an improvement in the corrosion properties of 316 SS in terms of corrosion potential and current density. This was attributed to the easy movement of Cr from the material matrix to the surface layer which resulted in the formation of a protective oxide layer on the material surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tao NR, Wang ZB, Tong WP, Sui ML, Lu J, Lu K (2002) An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater 50:4603–4616

    Article  CAS  Google Scholar 

  2. Zhu KY, Vassel A, Brisset F, Lu K, Lu J (2004) Nanostructure formation mechanism of α-titanium using SMAT. Acta Mater 52:4101–4110

    Article  CAS  Google Scholar 

  3. Zhang HW, Hei ZK, Liu G, Lu J, Lu K (2003) Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater 51:1871

    Article  CAS  Google Scholar 

  4. Wang ZB, Tao NR, Li S, Wang W, Liu G, Lu J, Lu K (2003) Effect of surface nanocrystallization on friction and wear properties in low carbon steel. Mater Sci Eng A 352:144–149

    Article  Google Scholar 

  5. Tao NR, Sui ML, Lu J, Lu K (1999) Surface nanocrystallization of iron induced by ultrasonic shot peening. Nanostruct Mater 11:433

    Article  CAS  Google Scholar 

  6. Zhang L, Han Y (2010) Effect of nanostructured titanium on anodization growth of self-organized TiO2 nanotubes. Nanotechnology 21:055602

    Article  Google Scholar 

  7. Wang K, Tao NR, Liu G, Lu J, Lu K (2006) Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Mater 54:5281

    Article  CAS  Google Scholar 

  8. Wu X, Tao N, Hong Y, Liu G, Xu B, Lu J, Lu K (2005) Strain-induced grain refinement of cobalt during surface mechanical attrition treatment. Acta Mater 53:681

    Article  CAS  Google Scholar 

  9. Wu X, Tao N, Hong Y, Lu J, Lu K (2005) Localized solid-state amorphization at grain boundaries in a nanocrystalline Al solid solution subjected to surface mechanical attrition. J Phys D 38:4140–4143

    Article  CAS  Google Scholar 

  10. Chang HW, Kelly PM, Shi YN, Zhang MX (2012) Thermal stability of nanocrystallized surface produced by surface mechanical attrition treatment in aluminum alloys. Surf Coat Technol 206:3970–3980

    Article  CAS  Google Scholar 

  11. Wu X, Tao N, Hong Y, Xu B, Lu J, Lu K (2002) Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of AL-alloy subjected to USSP. Acta Mater 50:2075

    Article  CAS  Google Scholar 

  12. Chen AY, Ruan HH, Wang J, Chan HL, Wang Q, Li Q, Lu J (2011) The influence of strain rate on the microstructure transition of 304 stainless steel. Acta Mater 59:3697–3709

    Article  CAS  Google Scholar 

  13. Dang C, Olugbade TO, Fan S, Zhang H, Gao LL, Li J, Lu Y (2018) Direct quantification of mechanical responses of TiSiN/Ag multilayer coatings through uniaxial compression of micropillars. Vacuum 156:310–316

    Article  CAS  Google Scholar 

  14. Lin Y, Lu J, Wang L, Xu T, Xue Q (2006) Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Mater 54:5599

    Article  CAS  Google Scholar 

  15. Tao NR, Wu XL, Sui ML, Lu J, Lu K (2004) Grain refinement at the nanoscale via mechanical twinning and dislocation interaction in a nickel-based alloy. J Mater Res 19:1623

    Article  CAS  Google Scholar 

  16. Tao NR, Zhang HW, Lu J, Lu K (2003) Development of nanostructures in metallic materials with low stacking fault energies during surface mechanical attrition treatment (SMAT). Mater Trans 44:1919

    Article  CAS  Google Scholar 

  17. Sun HQ, Shi YN, Zhang MX, Lu K (2007) Plastic strain-induced grain refinement in the nanometer scale in Mg alloy. Acta Mater 55:975

    Article  CAS  Google Scholar 

  18. Tao NR, Lu J, Lu K (2008) Surface nanocrystallization by surface mechanical attrition treatment. Mater Sci Forum 579:91–108

    Article  CAS  Google Scholar 

  19. Ren JW, Shan AD, Zhang JB, Song HW, Liu JL (2006) Surface nanocrystallization of Ni3Al by surface mechanical attrition treatment. Mater Lett 60:2076–2079

    Article  CAS  Google Scholar 

  20. Balusamy T, Sankara Narayanan TSN, Ravichandran K (2012) Effect of surface mechanical attrition treatment (SMAT) on boronizing of EN8 steel. Surf Coat Technol 213:221–228

    Article  CAS  Google Scholar 

  21. Dang C, Yao Y, Olugbade TO, Li J, Wang L (2018) Effect of multi-interfacial structure on fracture resistance of composite TiSiN/Ag/TiSiN multilayer coating. Thin Solid Films 653:107–112

    Article  CAS  Google Scholar 

  22. Barbucci A, Faroe G, Matteazzi P et al (1999) Corrosion behaviour of nanocrystalline Cu90Ni10 alloy in neutral solution containing chlorides. Corros Sci 41:463

    Article  CAS  Google Scholar 

  23. Vinogradov A, Mimaki T, Hashimoto S et al (1999) On the corrosion behaviour of ultra-fine grain copper. Scr Mater 41:319

    Article  CAS  Google Scholar 

  24. Balyanov A, Kutnyakova J, Amirkhanova NA et al (2004) Corrosion resistance of ultra fine-grained Ti. Scr Mater 51:225

    Article  CAS  Google Scholar 

  25. Balusamy T, Kumar S, Sankara Narayanan TSN (2010) Effect of surface nanocrystallization on the corrosion behavior of AISI 409 stainless steel. Corros Sci 52:3826–3834

    Article  CAS  Google Scholar 

  26. Zheng ZJ, Gao Y, Gui Y, Zhu M (2012) Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing. Corros Sci 54:60–67

    Article  CAS  Google Scholar 

  27. Ye W, Li Y, Wang FH (2006) Effect of nanocrystallization on the corrosion behavior of 309 stainless steel. Electrochim Acta 51:4426–4432

    Article  CAS  Google Scholar 

  28. Li Y, Fang F, Liu G (2004) Grain size effect on the electrochemical corrosion behavior of surface nanocrystallized low-carbon steel. Corrosion 60:891–896

    Article  CAS  Google Scholar 

  29. Arifvianto B, Mahardika SM (2012) Effects of surface mechanical attrition treatment (SMAT) on a rough surface of AISI 316L stainless steel. Appl Surf Sci 258:4538–4543

    Article  CAS  Google Scholar 

  30. Kwok CT, Cheng FT, Man HC, Ding WH (2006) Corrosion characteristics of nanostructured layer on 316 l stainless steel fabricated by cavitation-annealing. Mater Lett 60:2419–2422

    Article  CAS  Google Scholar 

  31. Kikuchi S, Komotori J (2010) Properties of gas nitrided austenitic stainless steel pre-treated with fine particle peening. Int J Fatigue 32:403–410

    Article  CAS  Google Scholar 

  32. Mahagaonkar SB, Brahmankar PK, Seemikeri CY (2009) Effect on fatigue performance of shot peened components: an analysis using DOE technique. Int J Fatigue 31:693–702

    Article  CAS  Google Scholar 

  33. Dai K, Villegas J, Stone Z, Shaw L (2004) Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process. Acta Mater 52:5771–5782

    Article  CAS  Google Scholar 

  34. Abioye TE, Olugbade TO, Ogedengbe TI (2017) Welding of dissimilar metals using gas metal arc and laser welding techniques: a review. J Emerg Trends Eng Appl Sci 8:225–228

    Google Scholar 

  35. Ogedengbe T, Olugbade TO, Olagunju O (2015) Application of house of quality matrix to material selection for engineering designs. Br J Appl Sci Technol 10:1–11

    Google Scholar 

  36. Liu G, Lu J, Lu K (2000) Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening. Mater Sci Eng A 286:91–95

    Article  Google Scholar 

  37. Anand Kumar S, Ganesh S, Sankara Narayanan TSN, Gnanamoorthy R (2012) Fretting wear behaviour of surface mechanical attrition treated alloy 718. Surf Coat Technol 206:4425–4432

    Article  CAS  Google Scholar 

  38. Arifvianto B, Suyitno M, Mahardika P, Dewo PT, Iswanto UA (2011) Effect of surface mechanical attrition treatments (SMAT) on microhardness, surface roughness, and wettability of AISI 316L. Mater Chem Phys 125:418–426

    Article  CAS  Google Scholar 

  39. Laleh M, Kargar F (2011) Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy. J Alloys Compd. 509:9150–9156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Professor J. Lu acknowledges the supports of the National Key R&D Program of China (Project No. 2017YFA0204403) and the Major Program of National Natural Science Foundation of China: NSFC 51590892. This work was also supported by the Government of Hong Kong, Hong Kong SAR, China, Hong Kong (PF16-02783). T. Olugbade appreciates the efforts of Dr Chan Lap Chung and Dr Liu Chang (City University of Hong Kong) for their assistance in the SMAT process and corrosion test, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Temitope Olugbade.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olugbade, T., Lu, J. Enhanced Corrosion Properties of Nanostructured 316 Stainless Steel in 0.6 M NaCl Solution. J Bio Tribo Corros 5, 38 (2019). https://doi.org/10.1007/s40735-019-0235-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-019-0235-7

Keywords

Navigation