Skip to main content
Log in

Study on Mechanical, Thermal and Morphological Properties of Banana Fiber-Reinforced Epoxy Composites

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

In recent decades, engineering applications involving polymer composites reinforced with natural fibers have increased significantly due to the advantages not only of favorable composite properties but also of fiber durability and environmental friendly nature. In the present work composites reinforced with upto 20 wt% fabric made of banana, a relatively known natural fiber from India. These banana fibers were cut into a similar average length of 10 and 20 mm and two sets of bio-composites were prepared by compression moulding process with varying weight percentage of epoxy resin by 0, 5, 10, 15 and 20%. Experimental results showed tensile, flexural and impact strength of bio-composites with up to 15 wt% has increased compared with neat epoxy. However, the mechanical strength has decreased above 15 wt% fiber reinforcement. This is a study of thermogravimetric analysis (TGA) that banana fiber-reinforced composites have high thermal stability up to 220 ºC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bhoopathi R, Ramesh M, Deepa C (2014) Fabrication and property evaluation of banana–hemp–glass fiber reinforced composites. Proc Eng 97:2032–2041

    Article  CAS  Google Scholar 

  2. Suresh S, Sudhakara D, Vinod B (2019) Investigation of bio-waste natural fiber-reinforced polymer hybrid composite: effect on mechanical and tribological characteristics of biodegradable composites. Mech Soft Mater. https://doi.org/10.1007/s40735-020-00339-w

    Article  Google Scholar 

  3. Ariga K, Leong DT, Mori T (2018) Nanoarchitectonics for hybrid and related materials for bio-oriented applications. Adv Funct Mater 28(27):1702905

    Article  CAS  Google Scholar 

  4. Wang Q, Asoh TA, Uyama H (2018) Facile preparation of a novel transparent composite film based on bacterial cellulose and atactic polypropylene. Bull Chem Soc Jpn 91(10):1537–1539

    Article  CAS  Google Scholar 

  5. Du W, Wang X, Zhan J, Sun X, Kang L, Jiang F, Zhang X, Shao Q, Dong M, Liu H, Murugadoss V (2019) Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim Acta 296:907–915

    Article  CAS  Google Scholar 

  6. Sengottaiyan C, Jayavel R, Shrestha RG, Subramani T, Maji S, Kim JH, Hill JP, Ariga K, Shrestha LK (2019) Indium oxide/carbon nanotube/reduced graphene oxide ternary nanocomposite with enhanced electrochemical supercapacitance. Bull Chem Soc Jpn 92(3):521–528

    Article  CAS  Google Scholar 

  7. Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89–103

    Article  CAS  Google Scholar 

  8. Gbadeyan OJ, Bright G, Sithole B, Adali S (2020) Physical and morphological properties of snail (Achatina Fulica) shells for beneficiation into biocomposite materials. J Bio Tribo-Corros 6(2):35

    Article  Google Scholar 

  9. Maurizio A, Luca C, Ramiro D, Bonaventura F, Ezio M, Annamaria M (1998) Broom fibers as reinforcing materials for polypropylene-based composites. J Appl Polym Sci 68:1077–1089

    Article  Google Scholar 

  10. Chandramohan D, Murali B, Vasantha-Srinivasan P, Kumar SD (2019) Mechanical, moisture absorption, and abrasion resistance properties of bamboo–jute–glass fiber composites. J Bio-Tribo-Corros 5(3):66

    Article  Google Scholar 

  11. Le Duigou A, Davies P, Baley C (2012) Replacement of glass/unsaturated polyester composites by flax/PLLA bio composites: is it justified? J Biobased Mater Bio 5(4):466–482

    Article  CAS  Google Scholar 

  12. Birsan M, Sadowski T, Marsavina L, Linul E, Pietras D (2013) Mechanical behavior of sandwich composite beams made of foams and functionally graded materials. Int J Solids Struct 50(3–4):519–530

    Article  Google Scholar 

  13. Chandramohan D, Ravikumar L, Sivakandhan C, Murali G, Senthilathiban A (2018) Retracted article: review on tribological performance of natural fibre-reinforced polymer composites. J Bio Tribo Corros 4(4):55

    Article  Google Scholar 

  14. Marsavina L, Sadowski T (2017) Stress intensity factors for an interface kinked crack in a bi-material plate loaded normal to the interface. Int J Fract 145(3):237–243

    Article  Google Scholar 

  15. Marsavina L, Linul E, Voiconi T, Sadowski T (2013) A comparison between dynamic and static fracture toughness of polyurethane foams. Polym Test 32(4):673–680

    Article  CAS  Google Scholar 

  16. Lebrun G, Couture A, Laperriere L (2013) Tensile and impregnation behavior of unidirectional hemp/paper/epoxy and flax/paper/epoxy composites. Compos Struct 103:151–160

    Article  Google Scholar 

  17. Sapuan SM, Leenie A, Harimi M, Beng YK (2006) Mechanical properties of woven banana fibrereinforced epoxy composites. Mater Des 27:689–693

    Article  CAS  Google Scholar 

  18. Purna Irawan A, Wayan Sukania I (2015) Tensile strength of banana fiber reinforced epoxy composites materials. Appl Mech Mater 776:260–263

    Article  Google Scholar 

  19. Wong K, Yousif B, Low K (2010) The effects of alkali treatment on the interfacial adhesion of bamboo fibers. Proc Inst Mech Eng Pt L J Mater Des Appl 224(3):139–148

    Google Scholar 

  20. Parre A, Karthikeyan B, Balaji A, Udhayasankar R (2019) Investigation of chemical, thermal and morphological properties of untreated and NaOH treated banana fiber. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.06.655

    Article  Google Scholar 

  21. Anbarasan R, Kalaignan GP, Vasudevan T, Gopalan A (1999) Characterization of chemical grafting of polyaniline onto wool fiber. Int J Polym Anal Charact 5(3):247–256

    Article  CAS  Google Scholar 

  22. Balaji A, Sivaramakrishnan K, Karthikeyan B, Purushothaman R, Swaminathan J, Kannan S, Udhayasankar R, Haja Madieen A (2019) Study on mechanical and morphological properties of sisal/banana/coir fiber-reinforced hybrid polymer composites. J Braz Soc Mech Sci 41(9):386

    Article  CAS  Google Scholar 

  23. Balaji A, Karthikeyan B, Swaminathan J (2019) Comparative mechanical, thermal, and morphological study of untreated and NaOH-treated bagasse fiber-reinforced cardanol green composites. Adv Compos Hybrid Mater 2(1):125–132

    Article  CAS  Google Scholar 

  24. Jacob M, Thomas S, Varughese KKT (2004) Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos Sci Technol 64(7–8):955–965

    Article  CAS  Google Scholar 

  25. Udhayasankar R, Karthikeyan B (2019) Processing of cardanol resin with CSP using compression molding technique. Mater Manuf Process 34(4):397–406

    Article  CAS  Google Scholar 

  26. Arthanarieswaran VP, Kumaravel A, Kathirselvam M (2014) Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: influence of glass fiber hybridization. Mater Des 64:194–202

    Article  CAS  Google Scholar 

  27. Lin JC, Chang LC, Nien MH, Ho HL (2006) Mechanical behavior of various nanoparticle filled composites at low-velocity impact. Compos Struct 74(1):30–36

    Article  Google Scholar 

  28. Agunsoye JO, Aigbodion VS (2013) Bagasse filled recycled polyethylene bio-composites: morphological and mechanical properties study. Results Phys 3:187–194

    Article  Google Scholar 

  29. Balaji A, Karthikeyan B, Swaminathan J, Sundar Raj C (2019) Effect of filler content of chemically treated short bagasse fiber-reinforced cardanol polymer composites. J Nat Fibers 16(4):613–627

    Article  CAS  Google Scholar 

  30. Gopinath A, Senthil Kumar M, Elayaperumal A (2014) Experimental investigations on mechanical properties of jute fiber reinforced composites with polyester and epoxy resin matrices. Procedia Eng 97:2052–2063

    Article  CAS  Google Scholar 

  31. Abdul Khalil HPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboofibre reinforced biocomposites: a review. Mater Des 42:353–368

    Article  CAS  Google Scholar 

  32. Aggarwal PK, Raghu N, Karmarkar A, Chuahan S (2013) Jute–polypropylene composites using m-TMI-grafted-polypropylene as a coupling agent. Mater Des 43:112–117

    Article  CAS  Google Scholar 

  33. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A 83:98–112

    Article  CAS  Google Scholar 

  34. Gu Y, Tan X, Yang Z, li M, Zhang Z (2014) Hot compaction and mechanical properties of ramie fabric/epoxy composite fabricated using vacuum assisted resin infusion molding. Mater Des 56:852–861

    Article  CAS  Google Scholar 

  35. Udhayasankar R, Karthikeyan B (2018) Preparation and properties of cashew nut shell liquid-based composites reinforced by coconut shell particles. Sur Rev Lett 26:1850174

    Article  CAS  Google Scholar 

  36. Gupta MK (2017) Effect of frequencies on dynamic mechanical properties of hybrid jute/sisal fibre reinforced epoxy composite. Adv Mater Process Technol 3:651–664

    Google Scholar 

  37. Bisaria H, Gupta MK, Shandilya P, Srivastava RK (2015) Effect of fibre length on mechanical properties of randomly oriented short jute fibre reinforced epoxy composite. Mater Today 2:1193–1199

    Google Scholar 

  38. Shalwan A, Yousif BF (2014) Influence of date palm fibre and graphite filler on mechanical and wear characteristics of epoxy composites. Mater Des 59:264–273

    Article  CAS  Google Scholar 

  39. Yan ZL, Wang H, Lau KT, Pather S, Zhang JC, Lin G (2013) Reinforcement of polypropylene with hemp fibres. Compos Part B 46:221–226

    Article  CAS  Google Scholar 

  40. Shah DU (2014) Natural fibre composites comprehensive Ashby-type materials selection charts. Mater Des 62:21–31

    Article  CAS  Google Scholar 

  41. Balaji A, Karthikeyan B, Swaminathan J, Sundar Raj C (2018) Thermal behavior of cardanol resin reinforced 20 mm long untreated bagasse fibre composites. Int J Polym Anal Char 23(1):70–77

    Article  CAS  Google Scholar 

  42. Barreto ACH, Rosa DS, Fechine PBA, Mazzetto SE (2011) Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Compos Part A 42(5):492–500

    Article  CAS  Google Scholar 

  43. Jawaid M, Abdul Khalil HPS, Abu Bakar A (2011) Chemical resistance, void content and tensile properties of oil palm/jute fiber reinforced polymer hybrid composites. Mater Des 32:1014–1019

    Article  CAS  Google Scholar 

  44. Reis PN, Ferreira JA, Antunes FV, Costa J (2007) D: Flexural behavior of hybrid laminated composites. Composites A 38(6):1612–1620

    Article  CAS  Google Scholar 

  45. Shibata S, Cao Y, Fukumoto I (2005) Effect of bagasse fiber on the flexural properties of biodegradable composites. Polym Compos 26(5):689–694

    Article  CAS  Google Scholar 

  46. Guo Y, Lyu Z, Yang X, Lu Y, Ruan K, Wu Y, Kong J, Gu J (2019) Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites. Compos Part B 164:732–739

    Article  CAS  Google Scholar 

  47. Swaminathan J, Ramalingam M (2009) Sundaraganesan N (2009) Molecular structure and vibrational spectra of 3-amino-5-hydroxypyrazole by density functional method. Spectrochim Acta Part A 71(5):1776–1782

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Balaji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, A., Purushothaman, R., Udhayasankar, R. et al. Study on Mechanical, Thermal and Morphological Properties of Banana Fiber-Reinforced Epoxy Composites. J Bio Tribo Corros 6, 60 (2020). https://doi.org/10.1007/s40735-020-00357-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-020-00357-8

Keywords

Navigation