Skip to main content
Log in

Real-Time Optical Measurement of Displacements Using Subpixel Image Registration

  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

An open-source tool for a real-time measurement of relative displacements based on image registration is presented. The use of upsampled matrix-multiplication discrete Fourier transform and measurement limited to predefined points of interest by virtual extensometers allows high sampling frequencies with a subpixel accuracy. This solution was designed primarily for laboratory testing in order to eliminate the problem with inaccurate measurement of cross-head displacement due to compliance of testing frames and difficulties connected to the attachment of strain-gauges or extensometers. However, the portable hardware allows for outdoor applications in which remote monitoring of displacements and deformations is required. The accuracy of the system was assessed, and the software was successfully verified through experimental testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. https://github.com/jacobantos/RTCorr

References

  1. Schreier H, Orteu J-J, Sutton MA (2009) Image correlation for shape, motion and deformation measurements. Springer, US. https://doi.org/10.1007/978-0-387-78747-3

    Book  Google Scholar 

  2. Nežerka V, Antoš J, Sajdlová T, Tesárek P (2016) Open source DIC tools for analysis of multiple cracking in fiber-reinforced concrete. Appl Mech Mater 827:336–339. https://doi.org/10.4028/www.scientific.net/AMM.827.336

    Article  Google Scholar 

  3. Koval YI, Boiko VI (1980) Reliability of foil strain gauges in multiple cyclic deformations. Strength Mater 12:1047–1050. https://doi.org/10.1007/bf00770540

    Article  Google Scholar 

  4. Cho S-D, Lee K-W, Li Z, Kim U-G (2015) Evaluation of reliability of strain gauge measurements for geosynthetics. J Korean Geosynthetic Soc 14:87–96. https://doi.org/10.12814/jkgss.2015.14.4.087

    Article  Google Scholar 

  5. Talebi M, Meehan CL, Poggiogalle TM (2018) Strain in a GRS bridge abutment: strain gauge attachment techniques, performance and survivability during construction and operation. In: IFCEE 2018, American society of civil engineers. https://doi.org/10.1061/9780784481608.025

  6. Zike S, Mikkelsen LP (2013) Correction of gauge factor for strain gauges used in polymer composite testing. Exp Mech 54:393–403. https://doi.org/10.1007/s11340-013-9813-7

    Article  Google Scholar 

  7. Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measure Sci Technol 47:062001. https://doi.org/10.1088/0957-0233/20/6/062001

    Article  Google Scholar 

  8. Gruen AW (1985) Adaptive least squares correlation: a powerful image matching technique. South African J Photography Remote Sens Cartography 14:175–187

    Google Scholar 

  9. Altunbasak Y, Mersereau RM, Patti AJ (2003) A fast parametric motion estimation algorithm with illumination and lens distortion correction. IEEE Trans Image Process 12:395–408. https://doi.org/10.1109/tip.2003.809012

    Article  Google Scholar 

  10. Pan B, Asundi A, Xie H, Gao J (2009) Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements. Opt Lasers Eng 47:865–874. https://doi.org/10.1016/j.optlaseng.2008.10.014

    Article  Google Scholar 

  11. Pan B, Wang Z, Xie H (2009) Generalized spatial-gradient-based digital image correlation for displacement and shape measurement with subpixel accuracy. The J Strain Anal Eng Des 44:659–669. https://doi.org/10.1243/03093247jsa546

    Article  Google Scholar 

  12. Pan B, Xie H, Wang Z (2010) Equivalence of digital image correlation criteria for pattern matching. Appl Opt 49:5501–5509. https://doi.org/10.1364/ao.49.005501

    Article  Google Scholar 

  13. Triconnet K, Derrien K, Hild F, Baptiste D (2009) Parameter choice for optimized digital image correlation. Opt Lasers Eng 47:728–737. https://doi.org/10.1016/j.optlaseng.2008.10.015

    Article  Google Scholar 

  14. Reu PL (2016) A realistic error budget for two dimension digital image correlation. Advan Opt Method Exper Mech 3:189–193. https://doi.org/10.1007/978-3-319-22446-6_24

    Google Scholar 

  15. Pan B (2018) Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals. Measure Sci Technol 29:082001. https://doi.org/10.1088/1361-6501/aac55b

    Article  Google Scholar 

  16. Xue Y, Cheng T, Xu X, Gao Z, Li Q, Liu X, Wang X, Song R, Ju X, Zhang Q (2017) High-accuracy and real-time 3d positioning, tracking system for medical imaging applications based on 3d digital image correlation. Opt Lasers Eng 88:82–90. https://doi.org/10.1016/j.optlaseng.2016.07.002

    Article  Google Scholar 

  17. Bezdidko SN (2016) Orthogonal aberrations: theory, methods, and practical applications in computational optics. J Opt Technol 83:351. https://doi.org/10.1364/jot.83.000351

    Article  Google Scholar 

  18. Jiang J (2003) Distortion correction for a wide-angle lens based on real-time digital image processing. Opt Eng 42:2029. https://doi.org/10.1117/1.1580155

    Article  Google Scholar 

  19. Yoneyama S (2006) Lens distortion correction for digital image correlation by measuring rigid body displacement. Opt Eng 45:023602. https://doi.org/10.1117/1.2168411

    Article  Google Scholar 

  20. Sun Q, Hou Y, Chen J (2015) Lens distortion correction for improving measurement accuracy of digital image correlation. Optik 126:3153–3157. https://doi.org/10.1016/j.ijleo.2015.07.068

    Article  Google Scholar 

  21. Bigger R, Blaysat B, Boo C, Grewer M, Hu J, Jones A, Klein M, Raghavan K, Reu P, Schmidt T, Siebert T, Simenson M, Turner D, Vieira A, Weikert T (2018) A good practices guide for digital image correlation, Tech rep. https://doi.org/10.32720/idics/gpg.ed1

  22. Sutton M, Yan J, Tiwari V, Schreier H, Orteu J (2008) The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Opt Lasers Eng 46:746–757. https://doi.org/10.1016/j.optlaseng.2008.05.005

    Article  Google Scholar 

  23. Wittevrongel L, Badaloni M, Balcaen R, Lava P, Debruyne D (2015) Evaluation of methodologies for compensation of out of plane motions in a 2D digital image correlation setup. Strain 51:357–369. https://doi.org/10.1111/str.12146

    Article  Google Scholar 

  24. Pan B, Lu Z, Xie H (2010) Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation. Opt Lasers Eng 48:469–477. https://doi.org/10.1016/j.optlaseng.2009.08.010

    Article  Google Scholar 

  25. Antoš J, Nežerka V, Somr M (2017) Assessment of 2d-DIC stochastic patterns. Acta Polytechnica CTU Proc 13:1–10. https://doi.org/10.14311/app.2017.13.0001

    Article  Google Scholar 

  26. Guizar-Sicairos M, Thurman ST, Fienup JR (2008) Efficient subpixel image registration algorithms. Opt Lett 33:156–158. https://doi.org/10.1364/ol.33.000156

    Article  Google Scholar 

  27. Fienup JR (1978) Reconstruction of an object from the modulus of its fourier transform. Opt Lett 3:27–29. https://doi.org/10.1364/ol.3.000027

    Article  Google Scholar 

  28. Fienup JR (1982) Phase retrieval algorithms: a comparison. Appl Opt 21:2758–2769. https://doi.org/10.1364/ao.21.002758

    Article  Google Scholar 

  29. Castro ED, Morandi C (1987) Registration of translated and rotated images using finite fourier transforms. IEEE Trans Pattern Anal Mach Intell 9:700–703. https://doi.org/10.1109/tpami.1987.4767966

    Article  Google Scholar 

  30. Ren J, Jiang J, Vlachos T (2010) High-accuracy sub-pixel motion estimation from noisy images in fourier domain. IEEE Trans Image Process 19:1379–1384. https://doi.org/10.1109/tip.2009.2039056

    Article  Google Scholar 

  31. Scharpf WJ (2010) Global registration and moving objects detection in noisy airborne image sequences. Opt Eng 49:127005. https://doi.org/10.1117/1.3520057

    Article  Google Scholar 

  32. Kennedy J, Belytschko T (1982) Theory and application of a finite element method for arbitrary lagrangian-eulerian fluids and structures. Nucl Eng Des 68:129–146. https://doi.org/10.1016/0029-5493(82)90026-7

    Article  Google Scholar 

  33. Xiao H, Bruhns O, Meyers A (1998) Direct relationship between the lagrangean logarithmic strain and the lagrangean stretching and the lagrangean kirchhoff stress. Mech Res Commun 25:59–67. https://doi.org/10.1016/s0093-6413(98)00007-x

    Article  Google Scholar 

  34. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:623–656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x

    Article  Google Scholar 

  35. Wu Y, Zhou Y, Saveriades G, Agaian S, Noonan JP, Natarajan P (2013) Local shannon entropy measure with statistical tests for image randomness. Inf Sci 222:323–342. https://doi.org/10.1016/j.ins.2012.07.049

    Article  Google Scholar 

  36. Ma Q, Ma S (2013) Experimental investigation of the systematic error on photomechanic methods induced by camera self-heating. Opt Express 21:7686. https://doi.org/10.1364/oe.21.007686

    Article  Google Scholar 

  37. Blaber J, Adair B, Antouniou A (2015) Ncorr: open-source 2D digital image correlation Matlab software. Exp Mech 55:1105–1122. https://doi.org/10.1007/s11340-015-0009-1

    Article  Google Scholar 

  38. Reu PL, Toussaint E, Jones E, Bruck HA, Iadicola M, Balcaen R, Turner DZ, Siebert T, Lava P, Simonsen M (2017) DIC challenge: developing images and guidelines for evaluating accuracy and resolution of 2D analyses. Exp Mech 58:1067–1099. https://doi.org/10.1007/s11340-017-0349-0

    Article  Google Scholar 

  39. Harilal R, Ramji M Adaptation of open source 2D DIC software Ncorr for solid mechanics applications, 9th International Symposium on Advanced Science and Technology in Experimental Mechanics. https://doi.org/10.13140/2.1.4994.1442

  40. Winkler J, Hendy C (2017) Improved structural health monitoring of london’s docklands light railway bridges using digital image correlation. Struct Eng Int 27:435–440. https://doi.org/10.2749/101686617x14881937384648

    Article  Google Scholar 

  41. Acikgoz S, DeJong MJ, Soga K (2018) Sensing dynamic displacements in masonry rail bridges using 2D digital image correlation. Struct Control Health Monit 25:e2187. https://doi.org/10.1002/stc.2187

    Article  Google Scholar 

Download references

Acknowledgment

The support by the Technology Agency of the Czech Republic [grant number TACR TJ01000263] and the Faculty of Civil Engineering at CTU in Prague [grant number SGS18/037/OHK1/1T/11] is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Nežerka.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antoš, J., Nežerka, V. & Somr, M. Real-Time Optical Measurement of Displacements Using Subpixel Image Registration. Exp Tech 43, 315–323 (2019). https://doi.org/10.1007/s40799-019-00315-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-019-00315-1

Keywords

Navigation