Skip to main content

Advertisement

Log in

Prediction of tropospheric ozone using artificial neural network (ANN) and feature selection techniques

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Tropospheric ozone (O3), as an air pollutant is increasing at an alarming rate in urban areas. The concentration of ozone is affected by precursor pollutants, such as particulate matter (PM10, PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon dioxide (CO2), and nitric oxide (NO), and meteorological parameters, such as air temperature (AT), relative humidity (RH), global solar radiation (SR), wind direction (WD), and wind speed (WS) of the area. Ozone is a secondary pollutant and strong oxidizing agent injurious to human health. The present study aimed to identify the most crucial factors that influence ozone formation and to develop an ozone prediction model using artificial neural network with optimal inputs. The data obtained from Limbayat, real-time air pollutants monitoring station of Surat city, have been used to evolve the model, followed by feature selection techniques, namely, sensitivity analysis, Boruta algorithm, and recursive feature elimination algorithm (RFE). Finally, 6/14 influencing parameters have been identified using an attribute selection approach. Interestingly, “hour of the day” was found the most prominent and governing parameter among the 14 parameters after applying various feature selection techniques in the experiments. The result showed that the efficiency of the prediction model was 79.4% when six parameters were used in the machine learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

Download references

Acknowledgements

The authors thank the Surat Municipal Corporation for providing air quality data for this study.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Both authors were equally involved in analyzing and editing the manuscript.

Corresponding author

Correspondence to Namrata Jariwala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapadia, D., Jariwala, N. Prediction of tropospheric ozone using artificial neural network (ANN) and feature selection techniques. Model. Earth Syst. Environ. 8, 2183–2192 (2022). https://doi.org/10.1007/s40808-021-01220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-021-01220-6

Keywords

Navigation