Skip to main content

Advertisement

Log in

Hierarchical Adaptive Genetic Algorithm Based T–S Fuzzy Controller For Non-linear Automotive Applications

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, a robust and enhanced evolutionary computing assisted Takagi Sugeno (T–S) fuzzy controller was developed for automotive fuel injection control. To augment the rule generation and fuzzy parameter estimation, we propose an enhanced evolutionary computing algorithm named Hierarchical Adaptive Genetic Algorithm (HAGA). The proposed HAGA model was applied to augment T–S fuzzy controller that in conjunction with Fuzzy Clustering Mean (FCM) has enabled optimal rule generation and control parameter estimation. The proposed HAGA model exploits Hierarchical concept-based AGA implementation that itself embodies novelties like adaptive crossover and mutation probability, to enable accurate, swift, and efficient control function by T–S Fuzzy controller. These novelties strengthen the proposed HAGA-TS fuzzy controller to exhibit time efficient and accurate control function that could be of utmost significance for non-linear process control. The proposed controller design is examined for its efficacy over automotive or vehicle data containing fuel injection rate, throttle angle, emission products etc., where considering current emission and/or torque requirements, the throttle angle is varied to achieve environmentally friendly and cost-efficient vehicle design. The simulation results revealed that the proposed HAGA TS-fuzzy controller outperforms other state of art evolutionary computing-based approaches such as GA, PSO based T–S fuzzy controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be available upon request.

Code Availability

The MATLAB 2015a.

References

  1. Zhang, Y., Khan, S.A., Kumar, A., Glopira, H., Sharif, A.: Measuring the impact of renewable energy, public health expenditure, logistics, and environmental performance on sustainable economic growth. Sustain. Dev. 28, 833–843 (2020)

    Article  Google Scholar 

  2. Zhang, Y., Khan, S.A., Kumar, A., Glopira, H., Sharif, A.: Is tourism really affected by logistical operations and environmental degradation? An empirical study from the perspective of Thailand. J. Clean. Prod. 227, 158–166 (2019)

    Article  Google Scholar 

  3. Zhang, Y., Ma, T., Khan, S.A.: Investigating the effect of government subsidies on end-of-life vehicle recycling. Waste Manag. Res. (2020). https://doi.org/10.1177/0734242X20953893

    Article  Google Scholar 

  4. Cairano, S.D., Bernardini, D., Bemporad, A., Kolmanovsky, I.V.: Stochastic MPC with learning for driver-predictive vehicle control and its application to HEV energy management. IEEE Trans. Control Syst. Technol. 22(3), 1018–1031 (2014)

    Article  Google Scholar 

  5. Martins, M.A.F., Zanin, A.C., Odloak, D.: Robust model predictive control of an industrial partial combustion fluidized-bed catalytic cracking converter. Chem. Eng. Res. Des. 92(5), 917–930 (2014)

    Article  Google Scholar 

  6. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng. Pract. 11(7), 733–767 (2003)

    Article  Google Scholar 

  7. Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (1999)

    Book  Google Scholar 

  8. Kouvaritakis, B., Cannon, M.: Nonlinear Predictive Control, Theory and Practice. The Institution of Engineering and Technology, Stevenage (2001)

    Book  Google Scholar 

  9. Richalet, J., O’Donovan, D.: Predictive Functional Control, Principles and Industrial Applications. Springer, London (2009)

    Book  Google Scholar 

  10. Sarimveis, H., Bafas, G.: Fuzzy model predictive control of non-linear processes using genetic algorithms. Fuzzy Sets Syst. 139(1), 59–80 (2003)

    Article  MathSciNet  Google Scholar 

  11. Marusak, P.M.: Advantages of an easy to design fuzzy predictive algorithm in control systems of nonlinear chemical reactors. Appl. Soft Comput. J. 9(3), 1111–1125 (2009)

    Article  Google Scholar 

  12. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MathSciNet  Google Scholar 

  13. Han, H.-G., Wu, X.L., Qiao, J.-F.: Real-time model predictive control using a self-organizing neural network. IEEE Trans. Neural Netw. Learn. Syst. 24(9), 1425–1436 (2013)

    Article  Google Scholar 

  14. Khairy, M., Elshafei, A.L., Emara, H.M.: LMI based design of constrained fuzzy predictive control. Fuzzy Sets Syst. 161(6), 893–918 (2010)

    Article  MathSciNet  Google Scholar 

  15. Kosko, B.: Fuzzy systems as universal approximators. In: Proceedings of the 1st IEEE International Conference on Fuzzy Systems (FUZZ ’92), pp. 1153–1162, March 1992.

  16. Ding, B., Ping, X.: Output feedback predictive control with one free control move for nonlinear systems represented by a Takagi-Sugeno model. IEEE Trans. Fuzzy Syst. 22(2), 249–266 (2014)

    Article  Google Scholar 

  17. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  Google Scholar 

  18. de Barros, J.C., Dexter, A.J.: On-line identification of computationally undemanding evolving fuzzy models. Fuzzy Sets Syst. 158(18), 1997–2012 (2007)

    Article  MathSciNet  Google Scholar 

  19. Yao, Y., Mi, J., Li, Z., et al.: A novel variable precision (θ, σ)-fuzzy rough set model based on fuzzy granules. Fuzzy Sets Syst. 236, 58–72 (2014)

    Article  MathSciNet  Google Scholar 

  20. Zhou, Q., Li, H., Wang, L.: Prescribed performance observer-based adaptive fuzzy control for nonstrict-feedback stochastic nonlinear systems. Query ID="Q15" Text="Kindly check author name and initials in reference [20]."IEEE Trans. Syst. Man Cybern. Syst. 48(10), 1747–1758 (2018). https://doi.org/10.1109/TSMC.2017.2738155

    Article  Google Scholar 

  21. Li, H., Bai, L., Zhou, Q., et al.: Adaptive fuzzy control of stochastic nonstrict-feedback nonlinear systems with input saturation. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2185–2197 (2017). https://doi.org/10.1109/TSMC.2016.2635678

    Article  Google Scholar 

  22. Tong, S., Li, Y., Sui, S.: Adaptive fuzzy tracking control design for SISO uncertain nonstrict feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 24(6), 1441–1454 (2016). https://doi.org/10.1109/TFUZZ.2016.2540058

    Article  Google Scholar 

  23. Zhou, Q., Wang, L., Wu, C., et al.: Adaptive fuzzy tracking control for a class of pure-feedback nonlinear systems with time-varying delay and unknown dead zone. Fuzzy Sets Syst. 329(15), 36–60 (2017). https://doi.org/10.1016/j.fss.2016.11.005

    Article  MathSciNet  MATH  Google Scholar 

  24. Min, W., Lu, Q.: An improved adaptive fuzzy backstepping control for nonlinear mechanical systems with mismatched uncertainties. Automatika 60(1), 1–10 (2019)

    Article  Google Scholar 

  25. Alfi, A., Modares, H.: System identification and control using adaptive particle swarm optimization. Appl. Math. Model. 35(3), 1210–1221 (2011)

    Article  MathSciNet  Google Scholar 

  26. Delgado, M.R., Nagai, E.Y., de Arruda, L.V.R.: A neurocoevolutionary genetic fuzzy system to design soft sensors. Soft Comput. Fusion Found. Methodol. Appl. 13(5), 481–495 (2009)

    Google Scholar 

  27. Chen, Z., Fang, H.: Data-driven fault detection for networked control system based on implicit model approach. 2016 35th Chinese Control Conference (CCC), Chengdu, 2016, pp. 9093–9098

  28. Pati, A.B., Chile, R.H., Wahane, V.R.: Fuzzy-PSO approach for control in nonlinear systems—real time application. Michael Faraday IET International Summit 2015, Kolkata, 2015, pp 36–42

  29. Chang, Y.C., Chen, C.H., Zhu, Z.C., Huang, Y.W.: Speed control of the surface-mounted permanent-magnet synchronous motor based on Takagi-Sugeno fuzzy models. IEEE Trans. Power Electron. 31(9), 6804–6810 (2016)

    Google Scholar 

  30. Stînean, A.I., Bojan-Dragos, C.A., Precup, R.E., Preitl, S., Petriu, E.M.: Takagi-Sugeno PD+I fuzzy control of processes with variable moment of inertia. 2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA), Madrid, 2015, pp. 1–8

  31. Wang, Z.P., Wu, H.N., Li, H.X.: Sampled-data fuzzy control for nonlinear coupled parabolic PDE-ODE systems. IEEE Trans. Cybern. PP(99), 1–13 (2017)

    Google Scholar 

  32. Wu, H.N., Wang, Z.P.: Observer-based H∞ sampled-data fuzzy control for a class of nonlinear parabolic PDE systems. IEEE Trans. Fuzzy Syst. PP(99), 1–1 (2017)

    Google Scholar 

  33. Li, Y., Liu, L., Feng, G.: Adaptive finite-time controller design for T-S fuzzy systems. IEEE Trans. Cybern. PP(99), 1–12 (2017)

    Google Scholar 

  34. Zhang, Y., Tao, G., Chen, M., Wen, L.: Parameterization and adaptive control of multivariable noncanonical T-S fuzzy systems. IEEE Trans. Fuzzy Syst. 25(1), 156–171 (2017)

    Article  Google Scholar 

  35. Cheridi, D.E., Mansouri, N.: Robust H∞ fault estimation and fault tolerant control for T-S nonlinear systems with time varying delays. 2016 8th International Conference on Modelling, Identification and Control (ICMIC), Algiers, 2016, pp. 503–508

  36. Shaker, M.S., Patton, R.J.: Active fault tolerant control for nonlinear systems with simultaneous actuator and sensor faults. Int. J. Control Autom. Syst. 11(6), 1149–1161 (2013)

    Article  Google Scholar 

  37. Liao, Q.F., Cai, W.J., Wang, Y.Y.: Effective T-S fuzzy model for decentralized control. 7th International Conference on Information and Automation for Sustainability, Colombo, 2014, pp. 1–6

  38. Pan, J., Zhang, B., Liu, F., Liu, F.: On local nonquadratic tracking control for continuous-time T-S fuzzy systems. 2016 35th Chinese Control Conference (CCC), Chengdu, 2016, pp. 3793–3798

  39. Shengjuan, H., Yang, G.H.: Input–output based fault estimation for T-S fuzzy systems with local nonlinear parts. IEEE Trans. Fuzzy Syst. PP(99), 1–1 (2016)

    Google Scholar 

  40. Zhong, Z., Wai, R.J., Shao, Z., Xu, M.: Reachable set estimation and decentralized controller design for large-scale nonlinear systems with time-varying delay and input constraint. IEEE Trans. Fuzzy Syst. PP(99), 1–1 (2016)

    Google Scholar 

  41. Ben Hamouda, L., Ayadi, M., Langlois, N.: Fault tolerant fuzzy-based model predictive controllers for automotive application. 2016 International Conference on Control, Decision and Information Technologies (CoDIT), St. Julian’s, 2016, pp. 117–122

  42. Bourahala, F., Guelton, K., Khaber, F., Manamanni, N.: Robust controller design for uncertain T-S fuzzy systems with time-varying delays. 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, 2016, pp. 2337–2342

  43. Fayçal, B., Noureddine, N.: An LMI approach to robust H∞ control and stabilization analysis for uncertain T-S fuzzy systems with state and input time-delays. 2015 3rd International Conference on Control, Engineering & Information Technology (CEIT), Tlemcen, 2015, pp. 1–6

  44. Wang, R., Yin, G., Jin, X.: Robust adaptive sliding mode control for nonlinear four-wheel steering autonomous Vehicles path tracking systems. 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, 2016, pp. 2999–3006

  45. Wei, Y., Qiu, J., Lam, H.K., Wu, L.: Approaches to T-S fuzzy-affine-model-based reliable output feedback control for nonlinear Ito stochastic systems. IEEE Trans. Fuzzy Syst. PP(99), 1–1 (2016)

    Google Scholar 

  46. Chang, W.J., Hsu, F.-L.: Mamdani and Takagi-Sugeno fuzzy controller design for ship fin stabilizing systems. 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, 2015, pp. 345–350

  47. Huang, C., Du, H., Naghdy, F., Li, W.: Takagi-Sugeno fuzzy H∞ tracking control for steer-by-wire systems. 2015 IEEE Conference on Control Applications (CCA), Sydney, NSW, 2015, pp. 1716–1721

  48. Yin, Y., Zheng, X., Yang, H., Zhao, X.: Stabilization for delayed positive nonlinear systems via T-S fuzzy modeling. 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, 2015, pp. 1687–1692

  49. Hu, S., Shi, M.: Fuzzy-model-based control design of nonlinear discrete-time networked control systems via event-triggering communication scheme. 2014 International Conference on Mechatronics and Control (ICMC), Jinzhou, 2014, pp. 533–538

  50. Lin, T., Tang, B., He, D., Zhang, Y.: Fuzzy-model-based H∞ performance analysis of nonlinear packetized networked control systems. In: Proceeding of the 11th World Congress on Intelligent Control and Automation, Shenyang, 2014, pp. 2060–2066

  51. Ben Hamouda, L., Bennouna, O., Ayadi, M., Langlois, N.: Quadratic stability and LMIs for tolerance to faults: Fuzzy model predictive control. 2014 18th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, 2014, pp. 387–392

  52. Saroj, D.K., Kar, I.: T-S fuzzy model based controller and observer design for a Twin Rotor MIMO System. 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Hyderabad, 2013, pp. 1–8

  53. Kamal, E., Aitouche, A., Ghorbani, R., Bayart, M.: Fuzzy Scheduler Fault Tolerant Control method for WES subject to instrument faults. 2013 American Control Conference, Washington, DC, 2013, pp. 3680–3685

  54. Li, P., Li, P., Sui, Y.: Adaptive fuzzy hysteresis internal model tracking control of piezoelectric actuators with nanoscale application. IEEE Trans. Fuzzy Syst. 24(5), 1246–1254 (2016)

    Article  Google Scholar 

  55. Peng, C., Ma, S., Xie, X.: Observer-based non-PDC control for networked T-S fuzzy systems with an event-triggered communication. IEEE Trans. Cybern. PP(99), 1–9 (2017)

    Google Scholar 

  56. Wag, M., Qiu, J., Chadli, M., Wang, M.: A switched system approach to exponential stabilization of sampled-data T-S fuzzy systems with packet dropouts. IEEE Trans. Cybern. 46(12), 3145–3156 (2016)

    Article  Google Scholar 

  57. Li, R., Shao, C., Feng, N.: H∞ fuzzy output tracking control of an autopilot with actuator dynamics. 2016 Chinese Control and Decision Conference (CCDC), Yinchuan, 2016, pp. 5866–5870

  58. Feng, X., Patton, R.: Active fault tolerant control of a wind turbine via T-S fuzzy model predictive control. 22nd Mediterranean Conference on Control and Automation, Palermo, 2014, pp. 446–451

  59. Zayani, H., Allouche, M., Kharrat, M., Chaabane, M.: T-S fuzzy maximum power point tracking control of photovoltaic conversion system. 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Monastir, 2015, pp. 534–539

  60. Lu, Q., Shi, P., Lam, H.K., Zhao, Y.: Interval type-2 fuzzy model predictive control of nonlinear networked control systems. IEEE Trans. Fuzzy Syst. 23(6), 2317–2328 (2015)

    Article  Google Scholar 

  61. Du, H., Li, W., Zhang, Y.: Tracking control of wheel slip ratio with velocity estimation for vehicle anti-lock braking system. The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, 2015, pp. 1900–1905

  62. Du, H., Li, W.: Model-based Takagi-Sugeno fuzzy approach for vehicle longitudinal velocity estimation during braking. 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, 2014, pp. 1851–1858

  63. Rastegar, S., Araújo, R., Mendes, J., Matias, T., Emami, A.: Self-adaptive Takagi-Sugeno model identification methodology for industrial control processes. IECON 2014—40th Annual Conference of the IEEE Industrial. Electronics Society, Dallas, TX, 2014, pp. 281–287

  64. Brandt, E.: Dynamic modeling of three-way catalyst for advanced emissions control systems. Ph.D. Dissertation, University of Michigan (1998)

  65. Guzzella, L., Onder, C.: Introduction to Modeling and Control of Internal Combustion Engine Systems. Springer, Berlin (2004)

    Book  Google Scholar 

  66. Espinosa, J., Vandewalle, J., Wertz, V.: Fuzzy Logic, Identification and Predictive Control, Advances in Industrial Control. Springer, London (2005)

    Book  Google Scholar 

  67. Kittisupakorn, P., Thitiyasook, P., Hussain, M.A., Daosud, W.: Neural network based model predictive control for a steel pickling process. J. Process Control 19(4), 579–590 (2009)

    Article  Google Scholar 

  68. Schäfer, A., Kühl, P., Diehl, M., Schlöder, J., Bock, H.G.: Fast reduced multiple shooting methods for nonlinear model predictive control. Chem. Eng. Process. Process Intensif. 46(11), 1200–1214 (2007)

    Article  Google Scholar 

  69. Steinboeck, A., Wild, D., Kugi, A.: Nonlinear model predictive control of a continuous slab reheating furnace. Control Eng. Pract. 21(4), 495–508 (2013)

    Article  Google Scholar 

  70. Jiang, H., Kwong, C.K., Chen, Z., Ysim, Y.C.: Chaos particle swarm optimization and T-S fuzzy modeling approaches to constrained predictive control. Expert Syst. Appl. 39(1), 194–201 (2012)

    Article  Google Scholar 

Download references

Funding

This work is not supported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsaid Md. Abdelrahim.

Ethics declarations

Conflict of interest

The author declare that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrahim, E.M. Hierarchical Adaptive Genetic Algorithm Based T–S Fuzzy Controller For Non-linear Automotive Applications. Int. J. Fuzzy Syst. 24, 607–621 (2022). https://doi.org/10.1007/s40815-021-01153-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01153-3

Keywords

Navigation