Skip to main content
Log in

Numerical Analysis of the Unsteady Natural Convection MHD Couette Nanofluid Flow in the Presence of Thermal Radiation Using Single and Two-Phase Nanofluid Models for Cu–Water Nanofluids

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The unsteady Couette nanofluid flow with heat transfer is investigated numerically for copper–water nanofluids under the combined effects of thermal radiation and a uniform transverse magnetic field with variable thermo-physical properties, in the case where the flow is established vertically between two parallel plates, so that one of them has an accelerated motion. The homogeneous single-phase model (i.e., Tiwari and Das’s nanofluid model) and the two-phase mixture model (i.e., Buongiorno’s nanofluid model) are utilized in this study together with Corcione’s model to further investigate and clarify the differences between those models and evaluate the validity of the single-phase model for studying the unsteady natural convection MHD Couette nanofluid flow with thermal radiation. In this investigation, we assume that the studied nanofluid is electrically conducting and has a Newtonian rheological behavior. The nonlinear dynamical system of partial differential equations are solved numerically by means of the Gear–Chebyshev–Gauss–Lobatto collocation technique for zero nanoparticles mass flux and no-slip impermeable conditions at the isothermal vertical plates. In a special case, the present numerical solution is also validated analytically and numerically with the earlier available results. For both nanofluid models, the effects of major parameters on the dimensionless velocity, temperature and volumetric fraction of nanoparticles are analysed via representative profiles, whereas the skin friction factor and the heat transfer rate are estimated numerically and discussed through tabular illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

B 0 :

External magnetic field component (T)

c :

Specific heat (\( {\text{J}}\,{\text{kg}}^{ - 1} \,{\text{K}}^{ - 1} \))

C f :

Skin friction factor

d f :

Diameter of water molecules \( \left( {d_{f}^{3} = 3 M_{{{\text{H}}_{2} {\text{O}}}} /\left( {500 \,\pi \, \rho_{f0} \,N_{AV} } \right)} \right) \) (m)

d p :

Diameter of the nanoparticles (m)

D B :

Brownian diffusion coefficient (m2 s−1)

D T :

Thermophoresis diffusion coefficient (m2 s−1)

F :

Accelerating parameter

G rT :

Thermal Grashof number

G :

Concentration Grashof number

g :

Gravitational acceleration, \( \left( {g = 9.8\,{\text{m}}\,{\text{s}}^{ - 2} } \right) \)

h :

Layer thickness \( \left( {h = 0.01 \,{\text{m}}} \right) \)

k :

Thermal conductivity (\( {\text{W}}\,{\text{K}}^{ - 1} \,{\text{m}}^{ - 1} \))

k B :

Boltzmann constant \( \left( { k_{B} = 1.38066 \times 10^{ - 23} \,{\text{J}}\,{\text{K}}^{ - 1} } \right) \)

L e :

Lewis number

M :

Magnetic parameter

\( M_{{{\text{H}}_{2} {\text{O}}}} \) :

Molecular mass weight of water \( \left( {M_{{{\text{H}}_{2} {\text{O}}}} = 18\,{\text{g}}\,{\text{mol}}^{ - 1} } \right) \)

n :

Velocity order

N AV :

Avogadro number \( \left( {N_{AV} = 6.022 \times 10^{23} \,{\text{mol}}^{ - 1} } \right) \)

N b :

Brownian motion parameter

N r :

Radiation parameter

N t :

Thermophoresis parameter

Nu x :

Local Nusselt number

P′ :

Pressure (Pa)

P r :

Prandtl number (P r  = ν/α)

q r :

Radiative heat flux \( ( {\text{W}}\,{\text{m}}^{ - 2} ) \)

Sh x :

Local Sherwood number

T′ :

Temperature (K)

T fr :

Freezing point of water \( \left( {T_{fr} = 273.15 \,{\text{K}}} \right) \)

t′ :

Time (s)

x′, y′, z′ :

Cartesian coordinates (m)

U 0 :

Velocity constant

u′, v′, w′ :

Velocity components \( ({\text{m}}\,{\text{s}}^{ - 1} ) \)

\( \vec{e}_{x} , \vec{e}_{y} ,\vec{e}_{z} \) :

Unit vectors along the Cartesian axes

\( \alpha \) :

Thermal diffusivity (α = k/(ρc)) (m2 s−1)

\( \beta \) :

Coefficient of volume expansion for heat transfer (K−1)

β ϕ :

Coefficient of volume expansion for mass transfer (β ϕ  = (ρ p  − ρ f )/ρ nf )

β R :

Mean absorption coefficient (m−1)

λ :

Ratio between the electrical conductivity of Cu-nanoparticles and water (λ = σ p /σ f )

μ :

Dynamic viscosity (μ = ρν) \( ({\text{Pa}} \;{\text{s}}) \)

ν :

Kinematic viscosity (m2 s−1)

ρ :

Density \( ({\text{kg}}\,{\text{m}}^{ - 3} ) \)

ρ f0 :

Water density at 293 K \( \left( {\rho_{f0} = 998\,{\text{Kg}}\,{\text{m}}^{ - 3} } \right) \)

(ρc):

Heat capacity (\( {\text{J}}\,{\text{m}}^{ - 3} \,{\text{K}}^{ - 1} \))

\( \sigma \) :

Electrical conductivity \( {(\Omega }^{ - 1} \,{\text{m}}^{ - 1} ) \)

σ e :

Stefan-Boltzmann constant \( \left( {\sigma_{e} = 5.67 \times 10^{ - 8} \,{\text{W}}\,{\text{K}}^{ - 4} \,{\text{m}}^{ - 2} } \right) \)

\(\phi^{\prime}\) :

Volumetric fraction of nanoparticles

y,η :

Partial derivative with respect to \( y \) or η

′:

Dimensional variables

c :

Cold

f :

Base fluid

h :

Hot

nf :

Nanofluid

p :

Nanoparticle

References

  1. Ali, F., Sheikh, N.A., Khan, I., Saqib, M.: Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: a fractional model. J. Magn. Magn. Mater. 423, 327–336 (2017)

    Article  Google Scholar 

  2. Seth, G.S., Ansari, M.S., Nandkeolyar, R.: Unsteady hydromagnetic Couette flow within porous plates in a rotating system. Adv. Appl. Math. Mech. 2, 286–302 (2010)

    MathSciNet  Google Scholar 

  3. Seth, G.S., Ansari, M.S., Nandkeolyar, R.: Unsteady hydromagnetic Couette flow induced due to accelerated movement of one of the porous plates of the channel in a rotating system. Int. J. Appl. Math. Mech. 6, 24–42 (2010)

    Google Scholar 

  4. Seth, G.S., Ansari, M.S., Nandkeolyar, R.: Unsteady hydromagnetic couette flow within a porous channel. Tamkang J. Sci. Eng. 14, 7–14 (2011)

    Google Scholar 

  5. Seth, G.S., Singh, J.K.: Effects of Hall current and rotation on unsteady MHD Couette flow within a porous channel in the presence of a moving magnetic field. J. Nat. Sci. Sustain. Tech. 5, 263–283 (2011)

    Google Scholar 

  6. Seth, G.S., Singh, J.K., Mahato, G.K.: Effects of Hall current and rotation on unsteady hydromagnetic Couette flow within a porous channel. Int. J. Appl. Mech. 4, 1–25 (2012). https://doi.org/10.1142/S1758825112500159

    Article  Google Scholar 

  7. Seth, G.S., Kumbhakar, B., Sharma, R.: Unsteady hydromagnetic natural convection flow of a heat absorbing fluid within a rotating vertical channel in porous medium with Hall effects. J. Appl. Fluid Mech. 8, 767–779 (2015)

    Article  Google Scholar 

  8. Seth, G.S., Sharma, R., Kumbhakar, B.: Effects of Hall current on unsteady MHD convective Couette flow of heat absorbing fluid due to accelerated movement of one of the plates of the channel in a porous medium. J. Porous Media 19, 13–20 (2016)

    Article  Google Scholar 

  9. Singh, A.K.: Natural convection in unsteady Couette motion. Def. Sci. J. 38, 35–41 (1988)

    Article  MATH  Google Scholar 

  10. Jha, B.K.: Natural convection in unsteady MHD couette flow. Heat Mass Transf. 37, 329–331 (2001)

    Article  Google Scholar 

  11. Singh, R.K., Singh, A.K., Sacheti, N.C., Chandran, P.: On hydromagnetic free convection in the presence of induced magnetic field. Heat Mass Transf. 46, 523–529 (2010)

    Article  Google Scholar 

  12. Raju, R.S., Reddy, G.J., Rao, J.A., Rashidi, M.M.: Thermal diffusion and diffusion thermo effects on an unsteady heat and mass transfer magnetohydrodynamic natural convection Couette flow using FEM. J. Comput. Des. Eng. 3, 349–362 (2016)

    Google Scholar 

  13. Seth, G., Mandal, P., Chamkha, A.: MHD free convective flow past an impulsively moving vertical plate with ramped heat flux through porous medium in the presence of inclined magnetic field. Front. Heat Mass Transf. 7, 1–12 (2016)

    Article  Google Scholar 

  14. Ali, F., Gohar, M., Khan, I.: MHD flow of water-based Brinkman type nanofluid over a vertical plate embedded in a porous medium with variable surface velocity, temperature and concentration. J. Mol. Liq. 223, 412–419 (2016)

    Article  Google Scholar 

  15. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ. Fed. 231, 99–106 (1995)

    Google Scholar 

  16. Corcione, M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag. 52, 789–793 (2011)

    Article  Google Scholar 

  17. Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)

    Article  MATH  Google Scholar 

  18. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  19. Baag, S., Mishra, S.R.: Heat and mass transfer analysis on MHD 3-D water-based nanofluid. J. Nanofluids 4, 352–361 (2015)

    Article  Google Scholar 

  20. Bhatti, M.M., Mishra, S.R., Abbas, T., Rashidi, M.M.: A mathematical model of MHD nanofluid flow having gyrotactic microorganisms with thermal radiation and chemical reaction effects. Neural Comput. Appl. 1–13 (2016). https://doi.org/10.1007/s00521-016-2768-8

  21. Boulahia, Z., Wakif, A., Sehaqui, R.: Numerical study of mixed convection of the nanofluids in two-sided lid-driven square cavity with a pair of triangular heating cylinders. J. Eng. 2016, 1–8 (2016). https://doi.org/10.1155/2016/8962091

    Article  Google Scholar 

  22. Boulahia, Z., Wakif, A., Chamkha, A.J., Sehaqui, R.: Numerical study of natural and mixed convection in a square cavity filled by a Cu–water nanofluid with circular heating and cooling cylinders. Mech. Ind. 18, 1–21 (2017). https://doi.org/10.1051/meca/2017021

    Google Scholar 

  23. Boulahia, Z., Wakif, A., Sehaqui, R.: Modeling of free convection heat transfer utilizing nanofluid inside a wavy enclosure with a pair of hot and cold cylinders. Front. Heat Mass Transf. 8(14), 1–10 (2017)

    Google Scholar 

  24. Makinde, O.D., Mishra, S.R.: On stagnation point flow of variable viscosity nanofluids past a stretching surface with radiative heat. Int. J. Appl. Comput. Math. 3, 561–578 (2017)

    Article  MathSciNet  Google Scholar 

  25. Thumma, T., Mishra, S.R.: Effect of viscous dissipation and Joule heating on magnetohydrodynamic Jeffery nanofluid flow with and without multi slip boundary conditions. J. Nanofluids. 7, 516–526 (2018)

    Article  Google Scholar 

  26. Rashidi, M.M., Ganesh, N.V., Hakeem, A.K.A., Ganga, B.: Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. J. Mol. Liq. 198, 234–238 (2014)

    Article  Google Scholar 

  27. Aman, S., Khan, I., Ismail, Z., Salleh, M.Z.: Impacts of gold nanoparticles on MHD mixed convection Poiseuille flow of nanofluid passing through a porous medium in the presence of thermal radiation, thermal diffusion and chemical reaction. Neural Comput. Appl. 1–9 (2016). https://doi.org/10.1007/s00521-016-2688-7

  28. Mosayebidorcheh, S., Sheikholeslami, M., Hatami, M., Ganji, D.D.: Analysis of turbulent MHD Couette nanofluid flow and heat transfer using hybrid DTM–FDM. Particuology 26, 95–101 (2016)

    Article  Google Scholar 

  29. Zaraki, A., Ghalambaz, M., Chamkha, A.J., Ghalambaz, M., De Rossi, D.: Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of size, shape and type of nanoparticles, type of base fluid and working temperature. Adv. Powder Technol. 26, 935–946 (2015)

    Article  Google Scholar 

  30. Tripathi, R., Seth, G.S., Mishra, M.K.: Double diffusive flow of a hydromagnetic nanofluid in a rotating channel with Hall effect and viscous dissipation: active and passive control of nanoparticles. Adv. Powder Technol. 28, 2630–2641 (2017)

    Article  Google Scholar 

  31. Seth, G.S., Mishra, M.K., Tripathi, R.: Modeling and analysis of mixed convection stagnation point flow of nanofluid towards a stretching surface: OHAM and FEM approach. Comput. Appl. Math. (2017). https://doi.org/10.1007/s40314-017-0565-3

    Google Scholar 

  32. Wakif, A., Boulahia, Z., Sehaqui, R.: A semi-analytical analysis of electro-thermo-hydrodynamic stability in dielectric nanofluids using Buongiorno’s mathematical model together with more realistic boundary conditions. Results Phys. (2018). https://doi.org/10.1016/j.rinp.2018.01.066

    Google Scholar 

  33. Viskanta, R., Grosh, R.J.: Boundary layer in thermal radiation absorbing and emitting media. Int. J. Heat Mass Transf. 5, 795–806 (1962)

    Article  Google Scholar 

  34. McNab, G.S., Meisen, A.: Thermophoresis in liquids. J. Colloid Interface Sci. 44, 339–346 (1973)

    Article  Google Scholar 

  35. Garnett, J.C.M.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. Ser. A. 203, 385–420 (1904)

    Article  MATH  Google Scholar 

  36. Siddheshwar, P.G., Kanchana, C., Kakimoto, Y., Nakayama, A.: Steady finite-amplitude Rayleigh–Bénard convection in nanoliquids using a two-phase model: theoretical answer to the phenomenon of enhanced heat transfer. J. Heat Transf. 139, 1–8 (2017)

    Google Scholar 

  37. Hayat, T., Ahmed, B., Abbasi, F.M., Alsaedi, A.: Hydromagnetic peristalsis of water based nanofluids with temperature dependent viscosity: a comparative study. J. Mol. Liq. 234, 324–329 (2017)

    Article  Google Scholar 

  38. Canuto, C., Hussaini, M.Y., Quarteroni, A.M., Thomas Jr., A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (2012)

    MATH  Google Scholar 

  39. Kumar, A., Singh, A.: Transient magnetohydrodynamic Couette flow with ramped velocity. Int. J. Fluid Mech. Res. 37, 435–446 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their very sincerely thanks to the peer reviewers, for their helpful suggestions and valuable comments, which have improved the paper appreciably. The corresponding author is also thankful to Dr. C. H. Amanulla from madanapalle institute of technology and Science in India, for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahim Wakif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakif, A., Boulahia, Z., Ali, F. et al. Numerical Analysis of the Unsteady Natural Convection MHD Couette Nanofluid Flow in the Presence of Thermal Radiation Using Single and Two-Phase Nanofluid Models for Cu–Water Nanofluids. Int. J. Appl. Comput. Math 4, 81 (2018). https://doi.org/10.1007/s40819-018-0513-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-018-0513-y

Keywords

Navigation