Skip to main content
Log in

Approximation of a System of Rational Functional Equations of Three Variables

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This study aims at substantiating the validity of stability results of a system of rational functional equations involving three variables connected with the Ulam stability theory of functional equations. There are some functional equations identified with real-time occurences. This system of functional equations is related with the intensive properties of substances such as density and volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Almahalebi, M., Chahbi, A., Kabbaj, S.: A fixed point approach to the stability of a bi-cubic functional equation in \(2\)-Banach spaces. Palest. J. Math. 5(2), 220–227 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Alshybani, S., Vaezpour, S.M., Saadati, R.: Stability of the sextic functional equation in various spaces. J. Inequ. Spec. Func. 9(4), 8–27 (2018)

    MathSciNet  Google Scholar 

  3. Arunkumar, M., Karthikeyan, S.: Solution and stability of a reciprocal functional equation originating from \(n\)-consecutive terms of a harmonic progression: Direct and fixed point methods. Int. J. Inf. Sci. Intell. Syst. 3(1), 151–168 (2014)

    Google Scholar 

  4. Arunkumar, M., Karthikeyan, S.: Fuzzy Banach algebra stability of reciprocal quadratic functional equation via fixed point approach. Int. J. Pure Appl. Math. 119(3), 31–39 (2018)

    Google Scholar 

  5. Bodaghi, A., Kim, S.O.: Approximation on the quadratic reciprocal functional equation, J. Func. Spac. Appl. Article ID532463 (2014)

  6. Bodaghi, A., Narasimman, P., Rassias, J.M., Ravi, K.: Ulam stability of the reciprocal functional equation in non-Archimedean fields. Acta Math. Univ. Comen. 85(1), 113–124 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Bodaghi, A., Rassias, J.M., Park, C.: Fundamental stabilities of an alternative quadratic reciprocal functional equation in non-Archimedean fields. Proc. Jangjeon Math. Soc. 18(3), 313–320 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Bodaghi, A., Senthil Kumar, B.V.: Estimation of inexact reciprocal-quintic and reciprocal-sextic functional equations. Mathematica, 49(82), No. 1-2, 3–14 (2017)

  9. Ebadian, A., Zolfaghari, S., Ostadbashi, S., Park, C.: Approximation on the reciprocal functional equation in several variables in matrix non-Archimedean random normed spaces. Adv. Differ. Equ. 314, 2015 (2015). https://doi.org/10.1186/s13662-015-0656-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Fassi, Z.I., Brzdek, J., Chahbi, A., Kabbaj, S.: On hyperstability of the biadditive functional equation. Acta Mathematica Scientia 37(6), 1727–1739 (2017)

    Article  MathSciNet  Google Scholar 

  11. Gajda, Z.: On the stability of additive mappings. Int. J. Math. Math. Sci. 14, 431–434 (1991)

    Article  MathSciNet  Google Scholar 

  12. Gavruta, P.: A generalization of the Hyers–Ulam–Rassias stability of approximately additive mapppings. J. Math. Anal. Appl. 184, 431–436 (1994)

    Article  MathSciNet  Google Scholar 

  13. Goldblatt, R.: Lectures on the Hyperreals; An Introduction to Nonstandard Analysis, Volume of 188 Graduate Texts in Mathematics. Springer, New York (1998)

    Google Scholar 

  14. Govindan, V., Balasubramanian, G., Muthamilarasi, C.: Generalized stability of cubic functional equation. Int. J. Sci. Eng. Sci. 2(1), 74–82 (2018)

    Google Scholar 

  15. Hejmej, B.: Stability of functional equations in dislocated quasi-metric spaces. Annales Mathematicae Silesianae 32, 215–225 (2018)

    Article  MathSciNet  Google Scholar 

  16. Hooda, N., Tomar, S.: Non-Archimedean stability and non-stability of quadratic reciprocal functional equation in several variables. Bull. Pure Appl. Sci. 37E(2), 267–272 (2018)

    Google Scholar 

  17. Hooda, N., Tomar, S.: Approximation of reciprocal-cubic functional equation in non-Archimedean normed space. Int. J. Sci. Res. Math. Stat. Sci. 5(5), 169–172 (2018)

    Google Scholar 

  18. Hyers, D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 27, 222–224 (1941)

    Article  MathSciNet  Google Scholar 

  19. Kim, S.O., Senthil Kumar, B.V., Bodaghi, A.: Stability and non-stability of the reciprocal-cubic and reciprocal-quartic functional equations in non-Archimedean fields. Adv. Differ. Equ. 77, 12 (2017)

    MATH  Google Scholar 

  20. Murali, R., Antony Raj, A., Thamizharasan, T.: Stability of reciprocal difference and adjoint functional equations in multi-Banach spaces: a fixed point method. J. Emerg. Technol. Innov. Res. 5(8), 450–455 (2018)

    Google Scholar 

  21. Narasimman, P.: Solution and stability of a generalized kadditive functional equation. J. Interdiscip. Math. 21(1), 171–184 (2018)

    Article  Google Scholar 

  22. Park, W.G., Bae, J.H.: Solution of a vector variable bi-additive functional equation. Commun. Korean Math. Soc. 23(2), 191–199 (2008)

    Article  MathSciNet  Google Scholar 

  23. Park, W.G., Bae, J.H.: Stability of a bi-additive functional equation in Banach modules over a \(C^{\star }\)-algebra. Discrete Dyn. Nat. Soc. Article ID 835893 (2012)

  24. Pinelas, S., Arunkumar, M., Sathya, E.: Hyers type stability of a radical reciprocal quadratic functional equation originating from \(3\) dimensional Pythagorean means. Int. J. Math. Appl. 5(4), 45–52 (2017)

    Google Scholar 

  25. Prager, W., Schwaiger, J.: Stability of the multi-Jensen equation. Bull. Korean Math. Soc. 45(1), 133–142 (2008)

    Article  MathSciNet  Google Scholar 

  26. Rajkumar, V.: The generalized Hyers–Ulam–Rassias stability of a quadratic functional equation. Int. J. Res. Sci. Innov. 5(7), 73–76 (2018)

    Google Scholar 

  27. Rassias, J.M.: On approximately of approximately linear mappings by linear mappings. J. Funct. Anal. USA 46, 126–130 (1982)

    Article  Google Scholar 

  28. Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)

    Article  MathSciNet  Google Scholar 

  29. Ravi, K., Arunkumar, M., Rassias, J.M.: On the Ulam stability for the orthogonally general Euler–Lagrange type functional equation. Int. J. Math. Sci. 3(8), 36–47 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Ravi, K., Rassias, J.M., Pinelas, S., Narasimman, P.: The stability of a generalized radical reciprocal quadratic functional equation in Felbin’s space. PanAm. Math. J. 24(1), 75–92 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Ravi, K., Senthil Kumar, B.V.: Ulam–Gavruta–Rassias stability of Rassias reciprocal functional equation. Glob. J. Appl. Math. Sci. 3(1–2), 57–79 (2010)

    Google Scholar 

  32. Ravi, K., Senthil Kumar, B.V.: Generalized Hyers–Ulam–Rassias stability of a system of bi-reciprocal functional equations. Euro. J. Pure Appl. Math. 8(2), 283–293 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Ravi, K., Suresh, S.: Generalized Hyers–Ulam stability of a cubic reciprocal functional equation. Br. J. Math. Comput. Sci. 20(6), 1–9 (2017)

    Article  Google Scholar 

  34. Senthil Kumar, B.V., Dutta, H.: Non-Archimedean stability of a generalized reciprocal-quadratic functional equation in several variables by direct and fixed point methods. Filomat 32(9), 3199–3209 (2018)

    Article  MathSciNet  Google Scholar 

  35. Senthil Kumar, B.V., Dutta, H.: Fuzzy stability of a rational functional equation and its relevance to system design. Int. J. Gen. Syst. 48(2), 157–169 (2019)

    Article  MathSciNet  Google Scholar 

  36. Senthil Kumar, B.V., Dutta, H.: Approximation of multiplicative inverse undecic and duodecic functional equations. Math. Meth. Appl. Sci. 42, 1073–1081 (2019)

    Article  MathSciNet  Google Scholar 

  37. Song, A., Song, M.: The stability of quadratic-reciprocal functional equation. In: AIP Conference Proceedings 1955, 040171 (2018). https://doi.org/10.1063/1.5033835

  38. Sophia, M.: Generalized Hyers–Ulam–Rassias stability of a reciprocal type functional equation in non-Archimedean fields. Int. J. Eng. Trends Technol. 55(3), 153–158 (2018)

    Google Scholar 

  39. Ulam, S.M.: Problems in Modern Mathematics, Chapter VI. Wiley-Interscience, New York (1964)

    MATH  Google Scholar 

  40. White, M.: Incommensurables and incomparables: on the conceptual status and the philosophical use of hyperreal numbers. Notre Dame J. Form. Log. 40, 420–446 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Senthil Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthil Kumar, B.V., Dutta, H. & Sabarinathan, S. Approximation of a System of Rational Functional Equations of Three Variables. Int. J. Appl. Comput. Math 5, 39 (2019). https://doi.org/10.1007/s40819-019-0626-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0626-y

Keywords

Mathematics Subject Classification

Navigation