Skip to main content
Log in

A Three Species Food Chain Model with Fear Induced Trophic Cascade

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In ecology, predator–prey interaction is one of the most important factors. The effects of predators on prey population can be direct and deadly, or it may be indirect and non-consumptive. Recent experimental findings have explored that fear of predator (indirect effect) alone can change prey’s behavior including reproduction and foraging. Suraci et al. (Nature Communications, 7, 10698, 2016) experimentally showed that fear of large carnivore reduces mesocarnivore foraging, which benefits the mesocarnivore’s prey. They also showed that fear of large carnivore mediates a cascading effect in lower trophic level. In the present study, our aim is to observe how the cascading effects of fear in a tri-trophic food chain model influence the dynamics of the model. We propose a three-species food chain model incorporating the cost of fear into the predation rate of middle predator. We consider the fact that due to fear of the top predator, middle predator forage less. As a result, the predation rate of middle predator decreases which reduces the predation pressure on basal prey. Mathematical properties such as boundedness, persistence, equilibria analysis, local and global stability analysis of the model are investigated. We perform bifurcation analysis around interior equilibrium point of the system. We notice that cost of the fear in middle predator can stabilize an otherwise chaotic system. We also investigate the robustness of the stabilizing role of the fear parameter. We observe that system initiating from the different dynamical regime, fear ultimately drives the system towards stability. It is also found that for increasing the level of fear, the system enters into a stable state through multiple switching of dynamics. Our results suggest that cost of the fear in middle predator can stabilize the system and enhances persistence of the system. We illustrate our analytical results numerically. Finally our results qualitatively reflect the experimental findings of Suraci et al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. For the generic matrix \(A=(a_{ij},|A|=\displaystyle \max _{\begin{array}{c} 0\le k \le n \end{array}}\sum _{j=1}^{n}|a_{jk}|\) and \(\mu (A)=\displaystyle \max _{1\le k\le n}(a_{kk}+\sum _{j=1(j\ne k)}^{n}|a_{jk}|)).\)

References

  1. Abrams, P.A.: Life history and the relationship between food availability and foraging effort. Ecology 72, 1242–1252 (1991)

    Article  Google Scholar 

  2. Altendorf, K.B., Laundré, J.W., González, C.A.L., Brown, J.S.: Assessing effects of predation risk on foraging behavior of mule deer. J. Mammal. 82, 430–439 (2001)

    Article  Google Scholar 

  3. Barnard, C.J.: Flock feeding and time budgets in the house sparrow (Passer domesticus L.). Nature 28, 295–309 (1980)

    Google Scholar 

  4. Brown, J.S., Laundré, J.W., Gurung, M.: The ecology of fear: optimal foraging, game theory, and trophic interactions. J. Mammal. 80, 385–399 (1999)

    Article  Google Scholar 

  5. Candolin, U.: Reproduction under predation risk and the trade-off between current and future reproduction in the threespine stickleback. Proc. R. Soc. Lond. B Biol. Sci. 265, 1171–1175 (1998)

    Article  Google Scholar 

  6. Cannon, W.B.: Bodily Changes in Pain, Hunger, Fear, and Rage: An Account of Recent Researches into the Function of Emotional Excitement. Read Books Ltd., Appleton (1915)

    Book  Google Scholar 

  7. Coppel, W.A.: Stability and asymptotic behavior of differential equations. Heath (1965)

  8. Creel, S., Christianson, D.: Relationships between direct predation and risk effects. Trends Ecol. Evol. 23(4), 194–201 (2008)

    Article  Google Scholar 

  9. Creel, S., Christianson, D., Liley, S., Winnie, J.A.: Predation risk affects reproductive physiology and demography of elk. Science 315, 960–960 (2007)

    Article  Google Scholar 

  10. Cresswell, W.: Predation in bird populations. J. Ornithol. 152(1), 251–263 (2011)

    Article  Google Scholar 

  11. Das, A., Samanta, G.: Modeling the fear effect on a stochastic prey-predator system with additional food for the predator. J. Phys. A Math. Theor. 51(46), 465601 (2018)

    Article  MathSciNet  Google Scholar 

  12. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: Matcont: a matlab package for numerical bifurcation analysis of odes. ACM Trans. Math. Softw. (TOMS) 29(2), 141–164 (2003)

    Article  MathSciNet  Google Scholar 

  13. Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Applications of Hopf Bifurcation, vol. 41. CUP Archive, Cambridge (1981)

    MATH  Google Scholar 

  14. Hastings, A., Powell, T.: Chaos in three-species food chain. Ecology 72, 896–903 (1991)

    Article  Google Scholar 

  15. Hua, F., Sieving, K.E., Fletcher, R.J., Wright, C.A.: Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance. Behav. Ecol. 25, 509–519 (2014)

    Article  Google Scholar 

  16. Hutson, V., Law, R.: Permanent coexistence in general models of three interacting species. J. Math. Biol. 21, 285–298 (1985)

    Article  MathSciNet  Google Scholar 

  17. Krebs, J.R., Davies, N.B.: An Introduction to Behavioural Ecology. Sinauer, Sunderland (1981)

    Google Scholar 

  18. Křivan, V.: The lotka-volterra predator-prey model with foraging-predation risk trade-offs. Am. Nat. 170(5), 771–782 (2007)

    Article  Google Scholar 

  19. La Salle, J.: The Stability of Dynamical Systems. SIAM, Bangkok (1976)

    Book  Google Scholar 

  20. Laundré, J.W., Hernández, L., Altendorf, K.B.: Wolves, elk, and bison: reestablishing the ‘landscape of fear’ in yellowstone National Park, USA. Can. J. Zool. 79, 1401–1409 (2001)

    Article  Google Scholar 

  21. Li, M.Y., Muldowney, J.S.: A geometric approach to global-stability problems. SIAM J. Math. Anal. 27(4), 1070–1083 (1996)

    Article  MathSciNet  Google Scholar 

  22. Li, M.Y., Wang, L.: A criterion for stability of matrices. J. Math. Anal. Appl. 225(1), 249–264 (1998)

    Article  MathSciNet  Google Scholar 

  23. Lima, S., Dill, L.M.: Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68, 619–640 (1990)

    Article  Google Scholar 

  24. Lima, S.L.: Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation. Biol. Rev. 84(3), 485–513 (2009)

    Article  MathSciNet  Google Scholar 

  25. Martin, J., Robert, H.: Logarithmic norms and projections applied to linear differential systems. J. Math. Anal. Appl. 45(2), 432–454 (1974)

    Article  MathSciNet  Google Scholar 

  26. Milinski, M., Heller, R.: Influence of a predator on the optimal foraging behavior of sticklebacks (Gasterosteus aculeatus L.). Nature 273, 642–644 (1978)

    Article  Google Scholar 

  27. Panday, P., Pal, N., Samanta, S., Chattopadhyay, J.: Stability and bifurcation analysis of a three-species food chain model with fear. Int. J. Bifurc. Chaos 28, 1850009 (2018)

    Article  MathSciNet  Google Scholar 

  28. Pangle, K., Peacor, S., Johannsson, O.: Large nonlethal effects of an invasive invertebrate predator on zooplankton population growth rate. Ecology 88(2), 402–412 (2007)

    Article  Google Scholar 

  29. Peacor, S.D., Peckarsky, B.L., Trussell, G.C., Vonesh, J.R.: Costs of predator-induced phenotypic plasticity: a graphical model for predicting the contribution of nonconsumptive and consumptive effects of predators on prey. Oecologia 171(1), 1–10 (2013)

    Article  Google Scholar 

  30. Preisser, E., Bolnick, D.I., Benard, M.F.: Scared to death? the effects of intimidation and consumption in predator-prey interactions. Ecology 86, 501–509 (2005)

    Article  Google Scholar 

  31. Preisser, E.L., Bolnick, D.I.: The many faces of fear: comparing the pathways and impacts of nonconsumptive predator effects on prey populations. PLoS ONE 3(6), e2465 (2008)

    Article  Google Scholar 

  32. Ripple, W., Beschta, R.L.: Wolves and the ecology of fear: can predation risk structure ecosystems? BioScience 54, 755–766 (2004)

    Article  Google Scholar 

  33. Sasmal, S.K.: Population dynamics with multiple allee effects induced by fear factors-a mathematical study on prey-predator interactions. Appl. Math. Model. 64, 1–14 (2018)

    Article  MathSciNet  Google Scholar 

  34. Schmitz, O.J., Beckerman, A.P., Brien, K.M.: Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78, 1388–1399 (1997)

    Article  Google Scholar 

  35. Sih, A.: Optimal behavior: can foragers balance two conflicting demands. Science 210, 1041–1043 (1980)

    Article  Google Scholar 

  36. Sih, A.: Foraging strategies and the avoidance of predation by an aquatic insect, notonecta hoffmanni. Ecology 63, 786–796 (1982)

    Article  Google Scholar 

  37. Suraci, J.P., Clinchy, M., Dill, L.M., Roberts, D., Zanette, L.Y.: Fear of large carnivores causes a trophic cascade. Nat. Commun. 7, 10698 (2016)

    Article  Google Scholar 

  38. Taylor, R.: Predation. Chapman & Hall, New York (1984)

    Book  Google Scholar 

  39. Thieme, H.R.: Mathematics in Population Biology. Princeton University Press, Princeton (2003)

    Book  Google Scholar 

  40. Upadhyay, R., Mishra, S.: Population dynamic consequences of fearful prey in a spatiotemporal predator-prey system. Math. Biosci. Eng. MBE 16(1), 338–372 (2018)

    Google Scholar 

  41. Wang, X., Zanette, L.Y., Zou, X.: Modelling the fear effect in predator-prey interactions. J. Math. Biol. 73(5), 1179–1204 (2016)

    Article  MathSciNet  Google Scholar 

  42. Wang, X., Zou, X.: Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators. Bull. Math. Biol. 79(6), 1325–1359 (2017)

    Article  MathSciNet  Google Scholar 

  43. Wirsing, A.J., Heithaus, M.R., Dill, L.M.: Living on the edge: dugongs prefer to forage in microhabitats that allow escape from rather than avoidance of predators. Anim. Behav. 74, 93–101 (2007)

    Article  Google Scholar 

  44. Xiao, Y., Chen, L.: Modeling and analysis of a predator prey model with disease in the prey. Math. Biosci. 171, 59–82 (2001)

    Article  MathSciNet  Google Scholar 

  45. Zanette, L.Y., White, A.F., Allen, M.C., Clinchy, M.: Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334, 1398–1401 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Pijush Panday’s research work is supported by DST under INSPIRE fellowship programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydev Chattopadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Positivity, Boundedness and Permanence of the system

Positivity

Since the state variables of the system (3) represent population densities, positivity implies that population never become zero and always survive.

Theorem 7.1

All solutions of the system (3) having positive initial values remain positive.

Proof

Let \({R^3_+=[0, \infty )^3}\) be the nonnegative octant in \({R^3}\). The right hand side of the system (3) are continuously differentiable and satisfy locally Lipschitz conditions. So, the solution of the system (3) with nonnegative initial conditions satisfies non negativity condition and uniquely exists in [0, M), where \(M (>0)\) is a sufficiently large number ([39] Theorem A.4). \(\square \)

Boundedness

Boundedness of the predator–prey system means that due to limited resource none of the interacting species of the system grows abruptly or exponentially for a long-time interval.

Theorem 7.2

All the solutions of the system (3) having positive initial conditions in \(R^3_{+}-\{0\}\) are bounded.

Proof

We define a function P which is given by, \(P=x+y+z\).

Differentiating the above equation w.r.t. time along with the solution of (3) is

$$\begin{aligned} \frac{dP}{dt} =\frac{dx}{dt}+\frac{dy}{dt}+\frac{dz}{dt} =x(1-x)-d_1y-d_2z. \end{aligned}$$

Therefore, \(\frac{dP}{dt}+\mu P =x(1-x+\mu )-(d_1-\mu )y-(d_2-\mu )z\le \frac{(1+\mu )^2}{4}=Q\)(say), where \(\mu \le min\{d_1,d_2\}\).

We obtain the following inequality by using standard theory of differential inequality

$$\begin{aligned} 0\le P\le \frac{Q(1-e^{-\mu t})}{\mu }+P(x(0),y(0),z(0))e^{-\mu t} . \end{aligned}$$

Therefore, as \(t\rightarrow \infty \) we get \(0\le P\le \frac{Q}{\mu }\).

So, all the solutions of system (3) in \(R^3_{+}-\{0\}\), having positive initial conditions are bounded in the region \(W=\{(x,y,z)\epsilon R^3_+:P\le \frac{Q}{\mu }+\eta \), for any \( \eta >0\) }. \(\square \)

Permanence

Persistence of a system implies that the minimal densities of all population are away from zero and bounded. Also all population can coexist for long range of time [16].

Theorem 7.3

Let \(r_1\), \(r_2\), \(r_3\) , \(R_1\), \(R_2\), \(R_3\) are positive constants does not dependent on the initial conditions of system (3). If the subsequent inequalities holds

$$\begin{aligned} r_1\le & {} \displaystyle \lim _{t\rightarrow \infty }inf\ x(t)\le \displaystyle \lim _{t\rightarrow \infty }sup\ x(t)\le R_1 \\ r_2\le & {} \displaystyle \lim _{t\rightarrow \infty }inf\ y(t)\le \displaystyle \lim _{t\rightarrow \infty }sup\ y(t)\le R_2 \\ r_3\le & {} \displaystyle \lim _{t\rightarrow \infty }inf\ z(t)\le \displaystyle \lim _{t\rightarrow \infty }sup\ z(t)\le R_3 \end{aligned}$$

with initial conditions \(x(0)>0\), \(y(0)>0\), \(z(0)>0\), then we say the system (3) is permanent.

Proof

From system (3) we obtain,

$$\begin{aligned} \frac{dx}{dt}\le & {} x(1-x),\nonumber \\ \frac{dy}{dt}\le & {} y\left( a_1x-\frac{a_2z}{1+b_2y}-d_1\right) ,\nonumber \\ \frac{dz}{dt}\le & {} z(a_2y-d_2). \end{aligned}$$
(17)

Now applying the standard comparison theorem [44], we get

$$\begin{aligned} \displaystyle \lim _{t\rightarrow \infty }sup\ x(t)\le R_1 , \displaystyle \lim _{t\rightarrow \infty }sup\ y(t)\le R_2 , \displaystyle \lim _{t\rightarrow \infty }sup\ z(t)\le R_3 \end{aligned}$$
(18)

where \(R_1=1\), \(R_2=\frac{d_2}{a_2}\), \(R_3=\frac{(a_1-d_1)(a_2+b_2d_2)}{a_2^2}\).

Here \(R_1\), \(R_2\) are always positive and \(R_3\) is positive if \(a_1>d_1\). Similarly, from equations (3), we obtain

$$\begin{aligned} \frac{dx}{dt}\ge & {} [(1-x)-a_1y]x,\nonumber \\ \frac{dy}{dt}\ge & {} \left[ \frac{a_1x}{1+b_1x}\frac{1}{1+kz}-a_2z-d_1\right] y,\nonumber \\ \frac{dz}{dt}\ge & {} \left[ \frac{a_2y}{1+b_2R_2}-d_2\right] z. \end{aligned}$$
(19)

Similarly using the standard comparison theorem [44], we have

$$\begin{aligned} \displaystyle \lim _{t\rightarrow \infty }inf\ x(t)\ge r_1 , \displaystyle \lim _{t\rightarrow \infty }inf\ y(t)\ge r_2 , \displaystyle \lim _{t\rightarrow \infty }inf\ z(t)\ge r_3 \end{aligned}$$
(20)

where \(r_1=\frac{a_2-a_1d_2(1+b_2R_2)}{a_2}\), \(r_2=\frac{d_2(1+b_2R_2)}{a_2}\) and

$$\begin{aligned} r_3=\frac{-(a_2+d_1k)+\sqrt{(a_2+d_1k)^2-4a_2k(d_1-\frac{a_1a_2-a_1^2d_2(1+b_2R_2)}{a_2+b_1a_2-a_1b_1d_2(1+b_2R_2)}})}{2a_2k}. \end{aligned}$$

Here, \(r_1, r_2, r_3\) are positive if \(d_1<\frac{a_1a_2-a_1^2d_2(1+b_2R_2)}{a_2+b_1a_2-a_1b_1d_2(1+b_2R_2)}\) and \(d_2<\frac{a_2}{a_1(1+b_2R_2)}.\)

From Eqs. (18) and (20) we conclude that the system (3) is permanent. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panday, P., Pal, N., Samanta, S. et al. A Three Species Food Chain Model with Fear Induced Trophic Cascade. Int. J. Appl. Comput. Math 5, 100 (2019). https://doi.org/10.1007/s40819-019-0688-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0688-x

Keywords

Navigation