Skip to main content
Log in

Jacobi Elliptic Function Expansion Method for Solving KdV Equation with Conformable Derivative and Dual-Power Law Nonlinearity

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this work, the KdV equation with conformable derivative and dual-power law nonlinearity is considered. It is exceedingly used as a model to depict the feeble nonlinear long waves in different fields of sciences. Furthermore, it explains the comparable effects of weak dispersion and weak nonlinearity on the evolvement of the nonlinear waves. Using the Jacobi elliptic function expansion method, new exact solutions of that equation have been found. As results, some obtained solutions behave as periodic traveling waves, bright soliton, and dark soliton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khater, M.M., Lu, D., Attia, R.A.: Dispersive long wave of nonlinear fractional Wu–Zhang system via a modified auxiliary equation method. AIP Adv. 9(2), 025003 (2019)

    Google Scholar 

  2. Khater, M.M., Lu, D., Attia, R.A.: Lump soliton wave solutions for the (2+ 1)-dimensional Konopelchenko–Dubrovsky equation and KdV equation. Mod. Phys. Lett. B 33(18), 1950199 (2019)

    MathSciNet  Google Scholar 

  3. Attia, R.A., Lu, D., Khater, M.M.: Chaos and relativistic energy-momentum of the nonlinear time fractional Duffing equation. Math. Comput. Appl. 24(1), 10 (2019)

    MathSciNet  Google Scholar 

  4. Khater, M.M., Attia, R.A., Lu, D.: Numerical solutions of nonlinear fractional Wu–Zhang system for water surface versus three approximate schemes. J. Ocean Eng. Sci. 4(2), 144–148 (2019)

    Google Scholar 

  5. Khater, M.M., Attia, R.A., Lu, D.: Explicit lump solitary wave of certain interesting (3+ 1)-dimensional waves in physics via some recent traveling wave methods. Entropy 21(4), 397 (2019)

    MathSciNet  Google Scholar 

  6. Khater, M.M., Attia, R.A., Lu, D.: Modified auxiliary equation method versus three nonlinear fractional biological models in present explicit wave solutions. Math. Comput. Appl. 24(1), 1 (2019)

    MathSciNet  Google Scholar 

  7. Inc, M., Abdel-Gawad, H.I., Tantawy, M., Yusuf, A.: On multiple soliton similariton-pair solutions, conservation laws via multiplier and stability analysis for the Whitham–Broer–Kaup equations in weakly dispersive media. Math. Methods Appl. Sci. 42(7), 2455–2464 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Abdel-Gawad, H.I., Tantawy, M., Inc, M., Yusuf, A.: On multi-fusion solitons induced by inelastic collision for quasi-periodic propagation with nonlinear refractive index and stability analysis. Mod. Phys. Lett. B 32(29), 1850353 (2018)

    MathSciNet  Google Scholar 

  9. Ghanbari, B., Yusuf, A., Baleanu, D.: The new exact solitary wave solutions and stability analysis for the (2+ 1)-dimensional Zakharov–Kuznetsov equation. Adv. Differ. Equ. 2019, 49 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Tchier, F., Yusuf, A.: Symmetry analysis, exact solutions and numerical approximations for the space-time Carleman equation in nonlinear dynamical systems. Eur. Phys. J. Plus 134(6), 250 (2019)

    Google Scholar 

  11. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  12. Oldham, K.B., Spanier, J.: The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover, New York (2006)

    MATH  Google Scholar 

  13. Dugowson, K.S.: Les Différentielles Métaphysiques: Histoire et Philosophie de la Généralisation de l’Ordre de Dérivation. Ph.D. thesis, University of Paris (1994)

  14. Arqub, O.A., Maayah, B.: Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator. Chaos Solitons Fractals 117, 117–124 (2018)

    MathSciNet  Google Scholar 

  15. Arqub, O.A.: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numer. Methods Partial Differ. Equ. 34, 1759–1780 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Arqub, O.A.: Application of residual power series method for the solution of time-fractional Schrodinger equations in one-dimensional space. Fundam. Inform. 166, 87–110 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Arqub, O.A.: Numerical algorithm for the solutions of fractional order systems of dirichlet function types with comparative analysis. Fundam. Inform. 166, 111–137 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  19. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional calculus: models and numerical methods. Series on complexity, vol. 3. World Scientific Publishing, Boston, MA, USA, Nonlinearity and Chaos (2012)

  20. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York, NY (1993)

    MATH  Google Scholar 

  21. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam (2006)

    MATH  Google Scholar 

  22. Bulut, H., Pandir, Y., Demiray, S.T.: Exact solutions of time-fractional KdV equations by using generalized Kudryashov method. Int. J. Model. Optim. 4(4), 315–320 (2014)

    MATH  Google Scholar 

  23. Bulut, H., Belgacem, F.B.M., Baskonus, H.M.: Some new analytical solutions for the nonlinear time-fractional KdV-Burgers-Kuramoto equation. Adv. Math. Stat. Sci. 2, 3 (2015)

    Google Scholar 

  24. Zhang, Y.: Solution of the KdV equation with fractional time derivative via variational method. Electron. J. Differ. Equ. 2014(66), 1–12 (2014)

    MathSciNet  Google Scholar 

  25. Li, C., Kumar, A., Kumar, S., Yang, X.J.: On the approximate solution of nonlinear time-fractional KdV equation via modified homotopy analysis Laplace transform method. J. Nonlinear Sci. Appl. 9, 5463–5470 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Aydi, H., Marasi, H.R., Piri, H., Talebi, A.: A solution to the new Caputo–Fabrizio fractional KDV equation via stability. J. Math. Anal. 8(4), 147–155 (2017)

    MathSciNet  Google Scholar 

  27. Zhang, W., Chang, Q., Jiang, B.: Explicit exact solitary-wave solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order. Chaos Solitons Fractals 13(2), 311–319 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Postolache, M., Gurefe, Y., Sonmezoglu, A., Ekici, M., Misirli, E.: Extended trial equation method and applications to some nonlinear problems. U.P.B Sci. Bull, Ser. A 76(2), 3–12 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Gurefe, Y., Sonmezoglu, A., Misirli, E.: Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics. Pramana 77(6), 1023–1029 (2011)

    Google Scholar 

  30. Li, B., Chen, Y., Zhang, H.: Auto-Bäcklund transformation and exact solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order. Phys. Lett. A 305(6), 377–382 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Bulut, H., Sulaiman, T.A., Baskonus, H.M.: New solitary and optical wave structures to the Korteweg–de Vries equation with dual-power law nonlinearity. Opt. Quant. Electron. 48(12), 564 (2016)

    Google Scholar 

  32. Li, B., Chen, Y., Zhang, H.: Explicit exact solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order. Chaos Solitons Fractals 15(4), 647–654 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Wadati, M.: Wave propagation in nonlinear lattice. I. J. Phys. Soc. Jpn. 38(3), 673–680 (1975)

    MathSciNet  MATH  Google Scholar 

  34. Wadati, M.: Wave propagation in nonlinear lattice. II. J. Phys. Soc. Jpn. 38(3), 681–686 (1975)

    MathSciNet  MATH  Google Scholar 

  35. Dey, B.: Domain wall solutions of KdV like equations with higher order nonlinearity. J. Phys. A Math. Gen. 19(1), L9 (1986)

    MathSciNet  MATH  Google Scholar 

  36. Coffey, M.W.: On series expansions giving closed-form solutions of Korteweg–de Vries-like equations. SIAM J. Appl. Math. 50(6), 1580–1592 (1990)

    MathSciNet  MATH  Google Scholar 

  37. Khalil, R., Horani, M.A., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53(3), 475–485 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Eslami, M., Khodadad, F.S., Nazari, F., Rezazadeh, H.: The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative. Opt. Quantum Electron. 49(12), 391 (2017)

    Google Scholar 

  41. Khodadad, F.S., Nazari, F., Eslami, M., Rezazadeh, H.: Soliton solutions of the conformable fractional Zakharov–Kuznetsov equation with dual-power law nonlinearity. Opt. Quantum Electron. 49(11), 384 (2017)

    Google Scholar 

  42. Aminikhah, H., Sheikhani, A.R., Rezazadeh, H.: Sub-equation method for the fractional regularized long-wave equations with conformable fractional derivatives. Sci. Iran. Trans. B Mech. Eng. 23(3), 1048 (2016)

    Google Scholar 

  43. Yusuf, A., Aliyu, A.I., Baleanu, D.: Soliton structures to some time-fractional nonlinear differential equations with conformable derivative. Opt. Quantum Electron. 50(1), 20 (2018)

    Google Scholar 

  44. Biswas, A., Al-Amr, M.O., Rezazadeh, H., Mirzazadeh, M., Eslami, M., Zhou, Q., Moshokoa, Q.S.P., Belic, M.: Resonant optical solitons with dual-power law nonlinearity and fractional temporal evolution. Optik 165, 233–239 (2018)

    Google Scholar 

  45. Rezazadeh, H., Korkmaz, A., Eslami, M., Vahidi, J., Asghari, R.: Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method. Opt. Quantum Electron. 50(3), 150 (2018)

    Google Scholar 

  46. Hosseini, K., Bekir, A., Kaplan, M., Güner, Ö.: On a new technique for solving the nonlinear conformable time-fractional differential equations. Opt. Quantum Electron. 49(11), 343 (2017)

    Google Scholar 

  47. Akram, G., Batool, F., Riaz, A.: Two reliable techniques for the analytical study of conformable time-fractional Phi-4 equation. Opt. Quantum Electron. 50(1), 22 (2018)

    Google Scholar 

  48. Rezazadeh, H., Tariq, H., Eslami, M., Mirzazadeh, M., Zhou, Q.: New exact solutions of nonlinear conformable time-fractional Phi-4 equation. Chin. J. Phys. 56(6), 2805–2816 (2018)

    Google Scholar 

  49. Rezazadeh, H., Mirhosseini-Alizamini, S.M., Eslami, M., Rezazadeh, M., Mirzazadeh, M., Abbagari, S.: New optical solitons of nonlinear conformable fractional Schrödinger–Hirota equation. Optik 172, 545–553 (2018)

    Google Scholar 

  50. Osman, M.S.: New analytical study of water waves described by coupled fractional variant Boussinesq equation in fluid dynamics. Pramana 93(2), 26 (2019)

    Google Scholar 

  51. Osman, M.S., Rezazadeh, H., Eslami, M.: Traveling wave solutions for (3+1)-dimensional conformable fractional Zakharov–Kuznetsov equation with power law nonlinearity. Nonlinear Eng. 8(1), 559–567 (2019)

    Google Scholar 

  52. Osman, M.S., Lu, D., Khater, M.M.: A study of optical wave propagation in the nonautonomous Schrödinger–Hirota equation with power-law nonlinearity. Results Phys. 13, 102157 (2019)

    Google Scholar 

  53. Osman, M.S., Ghanbari, B., Machado, J.A.T.: New complex waves in nonlinear optics based on the complex Ginzburg–Landau equation with Kerr law nonlinearity. Eur. Phys. J. Plus 134(1), 20 (2019)

    Google Scholar 

  54. Abdel-Gawad, H.I., Osman, M.S.: On the variational approach for analyzing the stability of solutions of evolution equations. Kyungpook Math. J. 53(4), 661–680 (2013)

    MathSciNet  MATH  Google Scholar 

  55. Rezazadeh, H., Osman, M.S., Eslami, M., Ekici, M., Sonmezoglu, A., Asma, M., Othman, W.A.M., Wong, B.R., Mirzazadeh, M., Zhou, Q., Biswas, A.: Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadratic-cubic nonlinearity. Optik 164, 84–92 (2018)

    Google Scholar 

  56. Hosseini, K., Bekir, A., Ansari, R.: New exact solutions of the conformable time-fractional Cahn–Allen and Cahn–Hilliard equations using the modified Kudryashov method. Optik 132, 203–209 (2017)

    Google Scholar 

  57. Osman, M.S., Wazwaz, A.M.: A general bilinear form to generate different wave structures of solitons for a (3+ 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Math. Methods Appl. Sci. (2019). https://doi.org/10.1002/mma.5721

    Article  Google Scholar 

  58. Osman, M.S.: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation. Nonlinear Dyn. 96(2), 1491–1496 (2019)

    Google Scholar 

  59. Javid, A., Raza, N., Osman, M.S.: Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets. Commun. Theor. Phys. 71(4), 362 (2019)

    MathSciNet  Google Scholar 

  60. Abdel-Gawad, H.I., Elazab, N.S., Osman, M.: Exact solutions of space dependent Korteweg–de Vries equation by the extended unified method. J. Phys. Soc. Jpn. 82(4), 044004 (2013)

    Google Scholar 

  61. Osman, M.S.: Multi-soliton rational solutions for some nonlinear evolution equations. Open Phys. 14(1), 26–36 (2016)

    Google Scholar 

  62. Bulut, H., Sulaiman, T.A., Baskonus, H.M.: Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion. Optik 163, 1–7 (2018)

    Google Scholar 

  63. Osman, M.S., Korkmaz, A., Rezazadeh, H., Mirzazadeh, M., Eslami, M., Zhou, Q.: The unified method for conformable time fractional Schrödinger equation with perturbation terms. Chin. J. Phys. 56(5), 2500–2506 (2018)

    Google Scholar 

  64. Tariq, K.U., Younis, M., Rezazadeh, H., Rizvi, S.T.R., Osman, M.S.: Optical solitons with quadratic-cubic nonlinearity and fractional temporal evolution. Mod. Phys. Lett. B 32(26), 1850317 (2018)

    MathSciNet  Google Scholar 

  65. Ali, M.N., Osman, M.S., Husnine, S.M.: On the analytical solutions of conformable time-fractional extended Zakharov–Kuznetsov equation through (\( G^{\prime }/G^{2} \))-expansion method and the modified Kudryashov method. SeMA J. 76(1), 15–25 (2019)

    MathSciNet  MATH  Google Scholar 

  66. Rezazadeh, H., Osman, M.S., Eslami, M., Mirzazadeh, M., Zhou, Q., Badri, S.A., Korkmaz, A.: Hyperbolic rational solutions to a variety of conformable fractional Boussinesq-Like equations. Nonlinear Eng. 8(1), 224–230 (2019)

    Google Scholar 

  67. Osman, M.S.: Multiwave solutions of time-fractional (2+ 1)-dimensional Nizhnik–Novikov–Veselov equations. Pramana 88(4), 67 (2017)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S Osman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V.S., Rezazadeh, H., Eslami, M. et al. Jacobi Elliptic Function Expansion Method for Solving KdV Equation with Conformable Derivative and Dual-Power Law Nonlinearity. Int. J. Appl. Comput. Math 5, 127 (2019). https://doi.org/10.1007/s40819-019-0710-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0710-3

Keywords

Navigation