Skip to main content

Advertisement

Log in

Generalized Lucas Polynomial Sequence Treatment of Fractional Pantograph Differential Equation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with the implementation and presentation of numerical solutions of fractional pantograph differential equations (FPDEs) using generalized Lucas polynomials (GLPs). The derivation of our proposed algorithms is built on introducing an operational matrix of derivatives (OMDs) of the GLPs and after that employing it to convert the problem into an algebraic system of equations whose solution can be found through some suitable algorithms such as Gauss elimination and Newton–Raphson methods. Finally, by providing various illustrative examples, including comparisons with the results obtained by some other existing literature methods, the efficiency and applicability of our proposed algorithms are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ockendon, J.R., Tayler, A.B.: The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. Loud. A. 322, 447–468 (1971)

    Article  Google Scholar 

  2. He, J.H.: Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol. 15(2), 86–90 (1999)

    Google Scholar 

  3. Hashemizadeh, E., Ebrahimzadeh, A.: An efficient numerical scheme to solve fractional diffusion-wave and fractional Klein–Gordon equations in fluid mechanics. Phys. A Stat. Mech. Appl. 503, 1189–1203 (2018)

    Article  MathSciNet  Google Scholar 

  4. Baillie, R.T.: Long memory processes and fractional integration in econometrics. J. Econ. 73(1), 5–59 (1996)

    Article  MathSciNet  Google Scholar 

  5. Davies, A.R., Karageorghis, A., Phillips, T.N.: Spectral Galerkin methods for the primary two-point boundary value problem in modelling viscoelastic flows. Int. J. Numer. Methods Eng. 26(3), 647–662 (1988)

    Article  Google Scholar 

  6. Bagley, R.L., Torvik, P.J.: Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23(6), 918–925 (1985)

    Article  Google Scholar 

  7. Rawashdeh, E.A.: Numerical solution of fractional integro-differential equations by collocation method. Appl. Math. Comput. 176(1), 1–6 (2006)

    Article  MathSciNet  Google Scholar 

  8. Bhrawy, A.H.: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algorithms 73(1), 91–113 (2016)

    Article  MathSciNet  Google Scholar 

  9. Abd-Elhameed, W.M., Youssri, Y.H.: Explicit shifted second-kind Chebyshev spectral treatment for fractional Riccati differential equation. CMES Comput. Model. Eng. Sci. 121(3), 1029–1049 (2019)

    Google Scholar 

  10. Abd-Elhameed, W.M., Youssri, Y.H.: Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations. Comput. Appl. Math. 37, 2897–2921 (2018)

    Article  MathSciNet  Google Scholar 

  11. Abd-Elhameed, W.M., Youssri, Y.H.: Sixth-kind Chebyshev spectral approach for solving fractional differential equations. Int. J. Nonlinear Sci. Numer. Simul. 20(2), 191–203 (2019)

    Article  MathSciNet  Google Scholar 

  12. Abd-Elhameed, W.M., Youssri, Y.H.: Spectral tau algorithm for certain coupled system of fractional differential equations via generalized Fibonacci polynomial sequence. Iran. J. Sci. Technol. Trans. A Sci, 43(2):543–554, 2019

  13. Abd-Elhameed, W.M.M., Youssri, Y.H.: A novel operational matrix of Caputo fractional derivatives of Fibonacci polynomials: spectral solutions of fractional differential equations. Entropy 18(10), 345 (2016)

    Article  MathSciNet  Google Scholar 

  14. Yuttanan, B., Razzaghi, M.: Legendre wavelets approach for numerical solutions of distributed order fractional differential equations. Appl. Math. Model. 70, 350–364 (2019)

    Article  MathSciNet  Google Scholar 

  15. Abd-Elhameed, W.M., Youssri, Y.H.: New spectral solutions of multi-term fractional order initial value problems with error analysis. CMES Comput. Model. Eng. Sci 105(5), 375–398 (2015)

    Google Scholar 

  16. Gaul, L., Klein, P., Kemple, S.: Damping description involving fractional operators. Mech. Syst. Signal Process 5(2), 81–88 (1991)

    Article  Google Scholar 

  17. Diethelm, Kai, Walz, Guido: Numerical solution of fractional order differential equations by extrapolation. Numer. Algorithms 16(3–4), 231–253 (1997)

    Article  MathSciNet  Google Scholar 

  18. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier (1998)

  19. Odibat, Z., Momani, S., Xu, H.: A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl. Math. Model. 34(3), 593–600 (2010)

    Article  MathSciNet  Google Scholar 

  20. Momani, S., Odibat, Z.: Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fractals 31(5), 1248–1255 (2007)

    Article  MathSciNet  Google Scholar 

  21. Ezz-Eldien, S.S., Wang, Y., Abdelkawy, M.A., Zaky, M.A., Aldraiweesh, M.A., Machado, J. T.: Chebyshev spectral methods for multi-order fractional neutral pantograph equations. Nonlinear Dynam., 1–13, 2020

  22. Doha, E.H., Bhrawy, A.H., Baleanu, D., Hafez, R.M.: A new Jacobi rational- Gauss collocation method for numerical solution of generalized pantograph equations. Appl. Numer. Math. 77, 43–54 (2014)

    Article  MathSciNet  Google Scholar 

  23. Doha, E.H., Bhrawy, A.H., Hafez, R.M.: Numerical algorithm for solving multi-pantograph delay equations on the half-line using Jacobi rational functions with convergence analysis. Acta Math. Appl. Sin. Engl. Ser. 33(2), 297–310 (2017)

    Article  MathSciNet  Google Scholar 

  24. Owolabi, K.M., Atangana, A.: Numerical Methods for Fractional Differentiation. Springer, Berlin (2019)

    Book  Google Scholar 

  25. Owolabi, K.M., Karaagac, B., Baleanu, D.: Pattern formation in superdiffusion predator–prey-like problems with integer-and noninteger-order derivatives. Math. Meth. Appl. Sci., (2020). https://doi.org/10.1002/mma.7007

  26. Owolabi, K.M., Karaagac, B.: Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system. Chaos Solitons Fractals 141, 110302 (2020)

    Article  MathSciNet  Google Scholar 

  27. Naik, P.A., Owolabi, K.M., Yavuz, M., Zu, J.: Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells. Chaos Solitons Fractals 140, 110272 (2020)

    Article  MathSciNet  Google Scholar 

  28. Mishra, A.M., Purohit, S.D., Owolabi, K.M., Sharma, Y.D.: A nonlinear epidemiological model considering asymptotic and quarantine classes for SARS CoV-2 virus. Chaos Solitons Fractals 138, 109953 (2020)

  29. Owolabi, K.M., Shikongo, A.: Fractional operator method on a multi-mutation and intrinsic resistance model. Alexandria Eng. J. 59, 1999–2013 (2020)

    Article  Google Scholar 

  30. Owolabi, K.M., Karaagac, B.: Dynamics of multi-pulse splitting process in one-dimensional Gray-Scott system with fractional order operator. Chaos Solitons Fractals 136, 109835 (2020)

    Article  MathSciNet  Google Scholar 

  31. Derfel, G.: On compactly supported solutions of a class of functional-differential equations. Modern Prob. Funct. Theory Funct. Anal., 255 (1980)

  32. Liu, M.Z., Li, D.: Properties of analytic solution and numerical solution of multi-pantograph equation. Appl. Math. Comput. 155(3), 853–871 (2004)

    Article  MathSciNet  Google Scholar 

  33. Derfel, G., Iserles, A.: The pantograph equation in the complex plane. J. Math. Anal. Appl. 213(1), 117–132 (1997)

    Article  MathSciNet  Google Scholar 

  34. Ali, I., Brunner, H., Tang, T.: A spectral method for pantograph-type delay differential equations and its convergence analysis. J. Comput. Math. 27, 254–265 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Nemati, S., Lima, P., Sedaghat, S.: An effective numerical method for solving fractional pantograph differential equations using modification of hat functions. Appl. Numer. Math. 131, 174–189 (2018)

    Article  MathSciNet  Google Scholar 

  36. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. J. Comput. Appl. Math. 309, 493–510 (2017)

    Article  MathSciNet  Google Scholar 

  37. Ebrahimi, H., Sadri, K.: An operational approach for solving fractional pantograph differential equation. Iran. J. Numer. Anal. Optim. 9(1), 37–68 (2019)

    Google Scholar 

  38. Yalçinbaş, S., Aynigül, M., Sezer, M.: A collocation method using Hermite polynomials for approximate solution of pantograph equations. J. Franklin Inst. 348(6), 1128–1139 (2011)

    Article  MathSciNet  Google Scholar 

  39. Jafari, H., Yousefi, S.A., Firoozjaee, M.A., Momani, S., Khalique, C.M.: Application of Legendre wavelets for solving fractional differential equations. Comput. Math. Appl. 62(3), 1038–1045 (2011)

    Article  MathSciNet  Google Scholar 

  40. Wang, L.-P., Chen, Y.-M.., Liu, D.-Y., Boutat, D.:Numerical algorithm to solve generalized fractional pantograph equations with variable coefficients based on shifted Chebyshev polynomials. Int. J. Comput. Math. 96(12), 2487–2510 (2019)

  41. Chen, J., Liu, F., Anh, V.: Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 338(2), 1364–1377 (2008)

    Article  MathSciNet  Google Scholar 

  42. Abd-Elhameed, W.M., Youssri, Y.H.: Generalized Lucas polynomial sequence approach for fractional differential equations. Nonlinear Dyn. 89(2), 1341–1355 (2017)

    Article  MathSciNet  Google Scholar 

  43. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Fractional-order Bernoulli wavelets and their applications. Appl. Math. Model. 40(17–18), 8087–8107 (2016)

    Article  MathSciNet  Google Scholar 

  44. Rabiei, K., Ordokhani, Y.: Solving fractional pantograph delay differential equations via fractional-order Boubaker polynomials. Eng. Comput. 35(4), 1431–1441 (2019)

    Article  Google Scholar 

  45. Sezer, M., Yalçinbaş, S., Sahin, N.: Approximate solution of multi-pantograph equation with variable coefficients. J. Comput. Appl. Math. 214(2), 406–416 (2008)

    Article  MathSciNet  Google Scholar 

  46. Rahimkhani, P., Ordokhani, Y., Babolian, E.: A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer. Algorithms 74(1), 223–245 (2017)

    Article  MathSciNet  Google Scholar 

  47. Muroya, Y., Ishiwata, E., Brunner, H.: On the attainable order of collocation methods for pantograph integro–differential equations. J. Comput. Appl. Math. 152(1–2), 347–366 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Youssri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssri, Y.H., Abd-Elhameed, W.M., Mohamed, A.S. et al. Generalized Lucas Polynomial Sequence Treatment of Fractional Pantograph Differential Equation. Int. J. Appl. Comput. Math 7, 27 (2021). https://doi.org/10.1007/s40819-021-00958-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-00958-y

Keywords

Mathematics Subject Classification

Navigation