Skip to main content
Log in

Numerical Simulation of Radiative MHD Sutterby Nanofluid Flow Through Porous Medium in the Presence of Hall Currents and Electroosmosis

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Analysis of thermal and fluid phenomena based on the fluid dynamics theory leads to understanding of fundamental mechanisms in modern technologies. Thermal/fluid transport is critical to many applications, such as photothermal cancer therapy, solar thermal evaporation and polymer composites. The current study focusses to investigate the effect of magnetohydrodynamics, Hall currents and electroosmosis on the propulsion of Sutterby nanofluids in a porous microchannel. The Brownian motion and thermophoresis effects have also been considered. The governing equations for the momentum, temperature and nanoparticle volume fraction have been modified under the suitable non-dimensional quantities. The resulting dimensionless system of equations have been solved using bvp4c package in computational software MATLAB. The pictorial representations have been presented for various flow quantities with respect to sundry fluid parameters. It is noted from the investigation that, there is a decrease in fluid velocity with an increase in Hartmann number, temperature decreases with the increment in radiation parameter and nanoparticle volume fraction reduces with the increment of Prandtl number and thermophoresis parameter. The results obtained for the Sutterby nanofluid propulsion model reveal many engrossing behaviors and has many applications such as disease diagnostics and cancerous tissues destruction, and that provide a further dimension to investigate the nanofluid flow problems with thermophysical properties in two/three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Das, S.K., Choi, S.U., Yu, W., Pradeep, T.: Nanofluids: Science and Technology. Wiley, New York (2007)

    Book  Google Scholar 

  2. Xuan, Y., Li, Q., Hu, W.: Aggregation structure and thermal conductivity of nanofluids. AIChE J. 49(4), 1038–1043 (2003)

    Article  Google Scholar 

  3. Saidur, R., Leong, K., Mohammed, H.A.: A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15(3), 1646–1668 (2011)

    Article  Google Scholar 

  4. Akbar, N.S., Nadeem, S.: Nano Sutterby fluid model for the peristaltic flow in small intestines. J. Comput. Theor. Nanosci. 10(10), 2491–2499 (2013)

    Article  Google Scholar 

  5. Akbar, N.S.: Peristaltic flow of a Sutterby nano fluid with double-diffusive natural convection. J. Comput. Theor. Nanosci. 12(8), 1546–1552 (2015)

    Article  Google Scholar 

  6. Hayat, T., Zahir, H., Mustafa, M., Alsaedi, A.: Peristaltic flow of Sutterby fluid in a vertical channel with radiative heat transfer and compliant walls: a numerical study. Results Phys. 6, 805–810 (2016)

    Article  Google Scholar 

  7. Sheikholeslami, M., Ganji, D.D., Javed, M.Y., Ellahi, R.: Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J. Magn. Magn. Mater. 374, 36–43 (2015)

    Article  Google Scholar 

  8. Sheikholeslami, M., Shehzad, S.: Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. Int. J. Heat Mass Transf. 106, 1261–1269 (2017)

    Article  Google Scholar 

  9. Reddy, M.G., Makinde, O.: Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel. J. Mol. Liq. 223, 1242–1248 (2016)

    Article  Google Scholar 

  10. Hayat, T., Muhammad, T., Shehzad, S.A., Alsaedi, A.: On magnetohydrodynamic flow of nanofluid due to a rotating disk with slip effect: a numerical study. Comput. Methods Appl. Mech. Eng. 315, 467–477 (2017)

    Article  MathSciNet  Google Scholar 

  11. Pattnaik, P.K., Mishra, S., Bhatti, M.M.: Duan-Rach approach to study Al2O3-Ethylene Glycol C2H6O2 nanofluid flow based upon KKL model. Inventions 5(3), 45 (2020)

    Article  Google Scholar 

  12. Majeed, A., Zeeshan, A., Bhatti, M.M., Ellahi, R.: Heat transfer in magnetite (Fe3O4) nanoparticles suspended in conventional fluids: Refrigerant-134A (C2H2F4), kerosene (C10H22), and water (H2O) under the impact of dipole, Heat Transfer Research, 51(3), 217–232 (2020)

  13. Zhang, L., Bhatti, M.M., Marin, M., Mekheimer, K.S.: Entropy analysis on the blood flow through anisotropically tapered arteries filled with Magnetic Zinc-Oxide (ZnO) nanoparticles. Entropy 22(10), 1070 (2020)

    Article  Google Scholar 

  14. Riaz, A., Ellahi, R., Bhatti, M.M., Marin, M.: Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel, Heat Transfer Research, 50(16), 1539–1560 (2019)

  15. Bhatti, M.M., Alamri, S.Z., Ellahi, R., Abdelsalam, S.I.: Intra-uterine particle-fluid motion through a compliant asymmetric tapered channel with heat transfer, J. Therm. Anal. Calorim. (2020) https://doi.org/10.1007/s10973-020-10233-9

  16. Waheed, S., Noreen, S., Hussanan, A.: Study of heat and mass transfer in electroosmotic flow of third order fluid through peristaltic microchannels. Appl. Sci. 9(10), 2164 (2019)

    Article  Google Scholar 

  17. Hui, T.H., Cho, W.C., Fong, H.W., Yu, M., Kwan, K.W., Ngan, K.C., Wong, K.H., Tan, Y., Yao, S., Jiang, H., Gu, Z., Lin, Y.: An electro-osmotic microfluidic system to characterize cancer cell migration under confinement. J. R. Soc. Interface 16(155), 0190062 (2019)

    Article  Google Scholar 

  18. Shih, Y.C., Liao, C.R., Chung, I.C., Chang, Y.S., Chang, P.L.: Simultaneous separation of five major ribonucleic acids by capillary electrophoresis with laser-induced fluorescence in the presence of electroosmotic flow: Application to the rapid screening of 5S rRNA from ovarian cancer cells. Analytica chimica acta 847, 73–79 (2014)

    Google Scholar 

  19. Nath, B., Raza, A., Sethi, V., Dalal, A., Ghosh, S.S., Biswas, G.: Understanding flow dynamics, viability and metastatic potency of cervical cancer (HeLa) cells through constricted microchannel. Sci. Rep. 8(1), 1–10 (2018)

    Google Scholar 

  20. Ganguly, S., Sarkar, S., Hota, T.K., Mishra, M.: Thermally developing combined electroosmotic and pressure-driven flow of nano fluids in a microchannel under the effect of magnetic field. Chem. Eng. Sci. 126, 10–21 (2015)

    Article  Google Scholar 

  21. Aparajita,A., Satapathy, A.K.: Numerical analysis of heat transfer characteristics of combined electroosmotic and pressure-driven fully developed flow of power law nanofluids in microchannels, Proceedings of the 3rd European Conference on Microfluidics, (2015)

  22. Prakash, J., Ramesh, K., Tripathi, D., Kumar, R.: Numerical simulation of heat transfer in blood flow altered by electroosmosis through tapered micro-vessels. Microvasc. Res. 118, 162–172 (2018)

    Article  Google Scholar 

  23. Tripathi, D., Sharma, A., Beg, O.A.: Electrothermal transport of nano fluids via peristaltic pumping in a finite microchannel: effects of Joule heating and helmholtz- smoluchowski velocity. Int. J. Heat Mass Transf. 111, 138–149 (2017)

    Article  Google Scholar 

  24. Vasu, N., De, S.: Electroosmotic flow of power-law fluids at high zeta potentials. Colloids Surf. A: Physicochem. Eng. Asp. 368(1–3), 44–52 (2010)

    Article  Google Scholar 

  25. Hatami, M., Ganji, D.: Heat transfer and flow analysis for sa-tio2 non-newtonian nanofluid passing through the porous media between two coaxial cylinders. J. Mol. Liq. 188, 155–161 (2013)

    Article  Google Scholar 

  26. Kameswaran, P., Shaw, S., Sibanda, P., Murthy, P.: Homogeneous-heterogeneous reactions in a nanofluid flow due to a porous stretching sheet. Int. J. Heat Mass Transf. 57(2), 465–472 (2013)

    Article  Google Scholar 

  27. Mahdi, R.A., Mohammed, H., Munisamy, K., Saeid, N.: Review of convection heat transfer and fluid flow in porous media with nanofluid. Renew. Sustain. Energy Rev. 41, 715–734 (2015)

    Article  Google Scholar 

  28. Sheikholeslami, M., Ellahi, R., Ashorynejad, H., Domairry, G., Hayat, T.: Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium. J. Comput. Theor. Nanosci. 11(2), 486–496 (2014)

    Article  Google Scholar 

  29. Ting, T.W., Hung, Y.M., Guo, N.: Entropy generation of viscous dissipative nanofluid flow in thermal non-equilibrium porous media embedded in microchannels. Int. J. Heat Mass Transf. 81, 862–877 (2015)

    Article  Google Scholar 

  30. Zhang, C., Zheng, L., Zhang, X., Chen, G.: Magnetohydrodynamic flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction. Appl. Math. Modelling 39(1), 165–181 (2015)

    Article  MathSciNet  Google Scholar 

  31. Prakash, J., Ramesh, K., Tripathi, D., Kumar, R.: Numerical simulation of heat transfer in blood flow altered by electroosmosis through tapered micro-vessels. Microvasc. Res. 118, 162–172 (2018)

    Article  Google Scholar 

  32. Lodhi, R.K., Ramesh, K.: Comparative study on electroosmosis modulated flow of MHD viscoelastic fluid in the presence of modified Darcy’s law. Chin. J. Phys. 68, 106–120 (2020)

    Article  MathSciNet  Google Scholar 

  33. Hayat, T., Afzal, S., Khan, M.I., Alsaedi, A.: Irreversibility aspects to flow of Sutterby fluid subject to nonlinear heat flux and Joule heating. Appl. Nanosci. 9(5), 1215–1226 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ramesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, K., Rawal, M. & Patel, A. Numerical Simulation of Radiative MHD Sutterby Nanofluid Flow Through Porous Medium in the Presence of Hall Currents and Electroosmosis. Int. J. Appl. Comput. Math 7, 30 (2021). https://doi.org/10.1007/s40819-021-00971-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-00971-1

Keywords

Navigation