Skip to main content
Log in

A Fast Convergent Semi-analytic Method for an Electrohydrodynamic Flow in a Circular Cylindrical Conduit

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

A semi-analytical solution of the nonlinear boundary value problem that models the electrohydrodynamic flow of a fluid in an ion drag configuration in a circular cylindrical conduit is presented. An integral operator expressed in terms of Green’s function is constructed then followed by an application of fixed point theory to generate a highly accurate semi-analytical expression of the fluid velocity for all possible values of relevant parameters. A proof of convergence for the proposed method, based on the contraction mapping principle, is presented. Numerical simulations and comparison with other analytical methods confirm that the proposed approach is convergent, stable, and highly accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McKee, S.: Calculation of electrohydrodynamic flow in a circular cylindrical conduit. Z. Angew Math. Mech. 77, 457–465 (1997)

    Article  MathSciNet  Google Scholar 

  2. Paullet, J.: On the solutions of electrohydrodynamic flow in a circular cylindrical conduit. Z. Angew Math. Mech. 79, 357–360 (1999)

    Article  MathSciNet  Google Scholar 

  3. Khan, N. A., Jamil, M., Mahmood, A., Ara, A.: Approximate solution for the electrohydrodynamic flow in a circular, cylindrical conduit, ISRN Comput. Math., 2012 (2012), Article ID 341069

  4. Akg̈ul, A., Baleanu, D., Inc, M., Tchier, F.: On the solutions of electrohydrodynamic flow with fractional differential equations by reproducing kernel method. Open Physics, 14 (2016) 685–689

  5. Beg, O., Rashidi, M.M., Rastegari, M.T., Beg, A.T., Motsa, S.S., Halim, A.: DTM-Padé numerical simulation of electrohydrodynamic ion drag medical pumps with electrical Hartmann and electrical Reynolds number effects. Adv. Biotechnol. Bioeng. 1, 62–79 (2013)

    Google Scholar 

  6. Mosayebidorcheh, S.: Taylor series solution of the electrohydrodynamic flow equation. Mech. Eng. Technol. 1, 40–45 (2013)

    Article  Google Scholar 

  7. Moghtadaei, M., Nik, S., Abbasbandy, S.: A spectral method for the electrohydrodynamic flow in a circular cylindrical conduit. Chin. Ann. Math. 36B, 307–322 (2015)

    Article  MathSciNet  Google Scholar 

  8. Mastroberardino, A.: Homotopy analysis method applied to electrohydrodynamic flow. Commun. Nonlinear Sci. Numer. Simulat. 16, 2730–2736 (2011)

    Article  MathSciNet  Google Scholar 

  9. Sabir, M.M.: Electrohydrodynamic flow solution in ion drag in a circular cylindrical conduit using hybrid neural network and genetic algorithm. Kuwait J. Sci. 45, 20–28 (2018)

    MathSciNet  Google Scholar 

  10. Ghasemi, S.E., Hatami, M., Mehdizadeh Ahangar, G.R., Ganjij, D.D.: Electrohydrodynamic flow analysis in a circular cylindrical conduit using least square method. J. Electrost. 72, 47–52 (2014)

    Article  Google Scholar 

  11. Gavabari, R.H., Abbasi, M., Ganji, D.D., Rahimipetroudi, I., Bozorgi, A.: Application of Galerkin and collocation method to the electro-hydrodynamic flow analysis in a circular cylindrical conduit. J. Br. Soc. Mech. Sci. Eng. 38, 2327–2332 (2016)

    Article  Google Scholar 

  12. Hajipour, M., Jajarmi, A., Baleanu, D.: On the accurate discretization of a highly nonlinear boundary value problem. Numer. Algorithms 79, 679–695 (2018)

    Article  MathSciNet  Google Scholar 

  13. Hajipour, M., Jajarmi, A., Malek, A., Baleanu, D.: Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation. Appl. Math Comput. 325, 146–158 (2018)

    MathSciNet  MATH  Google Scholar 

  14. He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Soliton. Fract. 30, 700–708 (2006)

    Article  MathSciNet  Google Scholar 

  15. Dizicheh, A., Salahshour, S., Ahmadian, A., Baleanu, D.: A novel algorithm based on the Legendre wavelets spectral technique for solving the Lane–Emden equations. Appl. Numer. Math. 153, 443–456 (2020)

    Article  MathSciNet  Google Scholar 

  16. Devi, M.C., Pirabaharan, P., Abukhaled, M., Rajendran, L.: Analysis of the steady-state behavior of pseudo-first-order EC-catalytic mechanism at a rotating disk electrode. Electrochimica Acta 345, 136175 (2020)

    Article  Google Scholar 

  17. Lund, L., Omar, Z., Khan, U., Khan, I., et al.: Stability analysis and dual solutions of micropolar nanofluid over the inclined stretching/shrinking surface with Convective Boundary Condition. Symmetry 12, 74 (2020)

    Article  Google Scholar 

  18. Lund, L., Omar, Z., Khan, I., et al.: Dual similarity solutions of MHD stagnation point flow of Casson fluid with effect of thermal radiation and viscous dissipation: stability analysis. Sci. Rep. 10, 1540 (2020)

    Article  Google Scholar 

  19. Abushammala, M., Khuri, S., Sayfy, A.: A novel fixed point iteration method for the solution of third order boundary value problems. Appl. Math. Comput. 271, 131–141 (2015)

    Article  MathSciNet  Google Scholar 

  20. Avetisyan, A., Khurshudyan, A.: Green’s function approach in approximate controllability for nonlinear physical processes. Mod. Phys. Lett. A 32, 1730015 (2017)

    Article  MathSciNet  Google Scholar 

  21. Andrade, F.M., Schmidt, A., Vicentini, E., Chenge, B.K., da Luz, M.G.: Green’s function approach for quantum graphs: an overview. Phys. Rep. 647, 1–46 (2016)

    Article  MathSciNet  Google Scholar 

  22. Abukhaled, M., Khuri, S.: An efficient semi-analytical solution of a one-dimensional curvature equation that describes the human corneal shape. Math. Comput. Appl. 24, 8 (2019)

    MathSciNet  Google Scholar 

  23. Abukhaled, M.: Green’s function iterative method for solving a class of boundary value problems arising in heat transfer. Appl. Math. Inf. Sci. 11(1), 229–234 (2017)

    Article  Google Scholar 

  24. Abukhaled, M.: Green’s function iterative approach for solving strongly nonlinear oscillators. Comput. Nonlinear Dyn. 12(5), 051021 (2017)

    Article  MathSciNet  Google Scholar 

  25. Abukhaled, M., Khuri, S.: A semi-analytical solution of amperometric enzymatic reactions based on Green’s functions and fixed point iterative schemes. Electroanal. Chem. 792, 66–71 (2017)

    Article  Google Scholar 

  26. Ahyoune, S., Sieiro, J., Carrasco, T., Vidal, N., López-Villegasa, J., Roca, E., Fernàndez, F.: Quasi-static PEEC planar solver using a weighted combination of 2D and 3D analytical Green’s functions and a predictive meshing generator. Integration 63, 322–341 (2018)

    Article  Google Scholar 

  27. Kafri, H.Q., Khuri, S.A., Sayfy, A.: A new approach based on embedding Green’s functions into fixed-point iterations for highly accurate solution to Troesch’s problem. Int. J. Comput. Meth Eng. Sci. Mech. 17, 93–105 (2016)

    Article  MathSciNet  Google Scholar 

  28. Khuri, S.A.: An alternative solution algorithm for the nonlinear generalized Emden–Fowler equation. Int. J. Nonlinear Sci. Numer. Simul. 2, 299–302 (2001)

    Article  MathSciNet  Google Scholar 

  29. Berinde, V.: Iterative Approximation of Fixed Points in Lecture Notes in Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  30. Sajjadi, S.S., Pariz, N., Karimpour, A., Jajarmi, A.: An off-line NMPC strategy for continuous-time nonlinear systems using an extended modal series method. Nonlinear Dyn. 78(4), 2651–2674 (2014)

    Article  MathSciNet  Google Scholar 

  31. Jajarmi, A., Hajipour, M.: An efficient finite difference method for the time-delay optimal control problems with time-varying delay. Asian J. Control 19, 554–563 (2017)

    Article  MathSciNet  Google Scholar 

  32. Abualrub, T., Abukhaled, M., Binish, J.: Wavelets approach for the optimal control of vibrating plates by piezoelectric patches. J. Vib. Control 24(6), 1101–1108 (2018)

    Article  MathSciNet  Google Scholar 

  33. Sadek, I., Abukhaled, M.: Optimal control of thermoelastic beam vibrations by piezoelectric actuation. J. Control Theory Appl. 11(3), 463–467 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwan Abukhaled.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abukhaled, M., Khuri, S.A. A Fast Convergent Semi-analytic Method for an Electrohydrodynamic Flow in a Circular Cylindrical Conduit. Int. J. Appl. Comput. Math 7, 32 (2021). https://doi.org/10.1007/s40819-021-00974-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-00974-y

Keywords

Navigation