Skip to main content
Log in

Numerical Analysis of Couple Stress Nanofluid in Temperature Dependent Viscosity and Thermal Conductivity

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This communication reports on an innovative study of two-dimensional couple stress fluid 3 with effect of viscosity and conductivity. We proposed a new model based on temperature dependent variable thermal conductivity on kinetic theory. Our model assumes that thermal conductivity is a decreasing function of temperature rather than an increasing function. The effect of the three key parameters, viscosity, thermal conductivity and couple stress parameter are analyzed. The coupled non-linear system is further validated numerically using the spectral quasilinearization method. The method is found to be accurate and convergent. Increasing the temperature dependent parameter for viscosity is shown to reduce the heat mass transfer rates at the surface. Increasing thermal conductivity and the couple stress parameter increased the heat mass transfer rates on the boundary surface

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Animasaun, I.: Effects of thermophoresis, variable viscosity and thermal conductivity on free convective heat and mass transfer of non-darcian mhd dissipative casson fluid flow with suction and nth order of chemical reaction. J. Nigerian Math. Soc. 34(1), 11–31 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (2001)

    Google Scholar 

  3. Bou-Said, B., Boucherit, H., Lahmar, M.: On the influence of particle concentration in a lubricant and its rheological properties on the bearing behavior. Mech. Ind. 13(2), 111–121 (2012)

    Google Scholar 

  4. Bridgman, P.W.: The thermal conductivity of liquids under pressure. Proc. Am. Acad. Arts Sci. 59(7), 141 (1923)

    Google Scholar 

  5. Cengel, Y.A., Cimbala, J.M.: Fluid Mechanics (Mcgraw-Hill Series in Mechanical Engineering). McGraw-Hill Sci. Eng. Math. 9, 198 (2004)

    Google Scholar 

  6. Choudhury, M., Hazarika, G.: The effects of variable viscosity and thermal conductivity on mhd oscillatory free convective flow past a vertical plate in slip flow regime with variable suction and periodic plate temperature. J. Appl. Fluid Mech. 6(2), 277–283 (2013)

    Google Scholar 

  7. Choudhury, M., Hazarika, G.C.: The effects of variable viscosity and thermal conductivity on mhd flow due to a point sink. Matematicas EEnsenanza Universitaria 16(2), 183 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Dhlamini, M., Kameswaran, P.K., Sibanda, P., Motsa, S., Mondal, H.: Activation energy and binary chemical reaction effects in mixed convective nanofluid flow with convective boundary conditions. J. Comput. Des. Eng. 6(2), 149–158 (2019)

    Google Scholar 

  9. Dhlamini, M., Mondal, H., Sibanda, P., Motsa, S.: Spectral quasi-linearization methods for powell-eyring MHD flow over a nonlinear stretching surface. J. Nanofluids 7(5), 917–927 (2018)

    Google Scholar 

  10. Dhlamini, M., Mondal, H., Sibanda, P., Motsa, S.: Activation energy and entropy generation in viscous nanofluid with higher order chemically reacting species. Int. J. Ambient Energy 1–13, 7 (2020)

    Google Scholar 

  11. Dhlamini, M., Mondal, H., Sibanda, P., Motsa, S.: Rotational nanofluids for oxytactic microorganisms with convective boundary conditions using bivariate spectral quasi-linearization method. J. Cent. South Univ. 27(3), 824–841 (2020)

    Google Scholar 

  12. Elbarbary, E.M.E., Elgazery, N.S.: Chebyshev finite difference method for the effects of variable viscosity and variable thermal conductivity on heat transfer from moving surfaces with radiation. Int. J. Therm. Sci. 43(9), 889–899 (2004)

    Google Scholar 

  13. Goqo, S., Oloniiju, S., Mondal, H., Sibanda, P., Motsa, S.: Entropy generation in MHD radiative viscous nanofluid flow over a porous wedge using the bivariate spectral quasi-linearization method. Case Stud. Therm. Eng. 12, 774–788 (2018)

    Google Scholar 

  14. Hassanien, I., Essawy, A., Moursy, N.: Variable viscosity and thermal conductivity effects on combined heat and mass transfer in mixed convection over a UHF/UMF wedge in porous media: the entire regime. Appl. Math. Comput. 145(2–3), 667–682 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Hayat, T., Abbasi, F., Ahmad, B., Alsaedi, A.: Mhd mixed convection peristaltic flow with variable viscosity and thermal conductivity. Sains Malays 43(10), 1583–1590 (2014)

    Google Scholar 

  16. Hayat, T., Imtiaz, M., Alsaedi, A.: Effects of homogeneous-heterogeneous reactions in flow of powell-eyring fluid. J. Cent. South Univ. 22(8), 3211–3216 (2015)

    Google Scholar 

  17. Hayat, T., Khan, M.I., Farooq, M., Gull, N., Alsaedi, A.: Unsteady three-dimensional mixed convection flow with variable viscosity and thermal conductivity. J. Mol. Liq. 223, 1297–1310 (2016)

    Google Scholar 

  18. Hayat, T., Waqas, M., Shehzad, S.A., Alsaedi, A.: Mixed convection flow of viscoelastic nanofluid by a cylinder with variable thermal conductivity and heat source/sink. Int. J. Numer. Meth. Heat Fluid Flow 26(1), 214–234 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Hazarika, G., Jadav, K.: Effects of variable viscosity and thermal conductivity on mhd free convective flow along a vertical porous plate with viscous dissipation. Int. J. Math. Trends Technol. 15(1), 70–85 (2014)

    Google Scholar 

  20. Horibata, S., Yarimitsu, S., Fujie, H.: Influence of synovial fluid pressure increase on the biphasic lubrication property of articular cartilage. Proc. Mech. Eng. Congr. J0260104, 68 (2017)

    Google Scholar 

  21. Kaladhar, K.: Natural convection flow of couple stress fluid in a vertical channel with hall and joule heating effects. Procedia Eng. 127, 1071–1078 (2015)

    Google Scholar 

  22. Kannan, T., Moorthy, M.: Effects of variable viscosity on power-law fluids over a permeable moving surface with slip velocity in the presence of heat generation and suction. J. Appl. Fluid Mech. 9(6), 9–22 (2016)

    Google Scholar 

  23. Khan, W., Yousafzai, F.: On the exact solutions of couple stress fluids. Adv. Trends Math. 1, 27–32 (2014)

    Google Scholar 

  24. Khan, Y., Wu, Q., Faraz, N., Yildirim, A.: The effects of variable viscosity and thermal conductivity on a thin film flow over a shrinking/stretching sheet. Comput. Math. Appl. 61(11), 3391–3399 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Khound, P., Hazaika, G.: The effect of variable viscosity and thermal conductivity on liquid film on an unsteady stretching surface. Proc. 46th Ann. Tech. Session Ass. Sc. Soc. 22, 47–56 (2000)

    Google Scholar 

  26. Lai, F., Kulacki, F.: The effect of variable viscosity on convective heat transfer along a vertical surface in a saturated porous medium. Int. J. Heat Mass Transf. 33(5), 1028–1031 (1990)

    Google Scholar 

  27. Lai, W.M., Kuei, S.C., Mow, V.C.: Rheological equations for synovial fluids. J. Biomech. Eng. 100(4), 169 (1978)

    Google Scholar 

  28. Lin, J.-R.: Linear stability analysis of rotor-bearing system: couple stress fluid model. Comput. Struct. 79(8), 801–809 (2001)

    Google Scholar 

  29. Lin, J.-R., Lu, Y.-M.: Steady-state performance of wide parabolic-shaped slider bearings with a couple stress fluid. J. Mar. Sci. Technol. 12(4), 239–246 (2004)

    Google Scholar 

  30. Manjunatha, S., Gireesha, B.: Effects of variable viscosity and thermal conductivity on MHD flow and heat transfer of a dusty fluid. Ain Shams Eng. J. 7(1), 505–515 (2016)

    Google Scholar 

  31. Misra, J.C., Adhikay, S.D., Mallick, B., Sinha, A.: Mathematical modeling of blood flow in arteries subject to vibrating environment. J. Mech. Med. Biol. 18(01), 1850001 (2018)

    Google Scholar 

  32. Monica, M., Vittal, C., Reddy, M.C.K.: Stagnation point flow of a mhd powell-eyring fluid over a nonlinearly stretching sheet in the presence of heat source/sink. J. Progress. Res. Math. 8(2), 1290–1300 (2016)

    Google Scholar 

  33. Motsa, S.S., Magagula, V.M., Sibanda, P.: A bivariate chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations. Sci. World J. 2014, 1–13 (2014)

    Google Scholar 

  34. Motsa, S.S., Mutua, S.F., Stanford, S.: Solving nonlinear parabolic partial differential equations using multidomain bivariate spectral collocation method. Nonlinear Syst. Des. Anal. Estim. Control 2, 174 (2016). https://doi.org/10.5772/64600

    Article  Google Scholar 

  35. Pal, D., Mondal, H.: Effects of temperature-dependent viscosity and variable thermal conductivity on MHD non-darcy mixed convective diffusion of species over a stretching sheet. J. Egypt. Math. Soc. 22(1), 123–133 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Panigrahi, S., Reza, M., Mishra, A.K.: Mixed convective flow of a powell-eyring fluid over a non-linear stretching surface with thermal diffusion and diffusion thermo. Procedia Eng. 127, 645–651 (2015)

    Google Scholar 

  37. Patil, P.M.: Effects of surface mass transfer on steady mixed convection flow from vertical stretching sheet with variable wall temperature and concentration. Int. J. Numer. Meth. Heat Fluid Flow 22(3), 287–305 (2012)

    Google Scholar 

  38. Polezhaev, Y.V., Frolov, G.A.: Influence of thermal conductivity of a material on an unsteady heat removal parameter. J. Eng. Phys. Thermophys. 62, 391–396 (1992)

    Google Scholar 

  39. Ram, N.: Influence of couple stress lubricants on hole-entry hybrid journal bearings. J. Tribol. 14, 32–49 (2017)

    Google Scholar 

  40. Rao, T.V.V.L.N., Sufian, S., Mohamed, N.M.: Analysis of nanoparticle additive couple stress fluids in three-layered journal bearing. J. Phys. Conf. Ser. 431, 012023 (2013)

    Google Scholar 

  41. Sahu, M., Sharma, S., Agrawal, A.: Study of arterial blood flow in stenosed vessel using non-newtonian couple stress fluid model. Int. J. Dyn. Fluids 6(2), 248–257 (2000)

    Google Scholar 

  42. Samyuktha, N., Ravindran, R.: Thermal radiation effect on mixed convection flow over a vertical stretching sheet embedded in a porous medium with suction (injection). Procedia Eng. 127, 767–774 (2015)

    Google Scholar 

  43. Singh, C.: Lubrication theory for couple stress fluids and its application to short bearings. Wear 80(3), 281–290 (1982)

    Google Scholar 

  44. Sinha, P., Singh, C., Prasad, K.: Couple stresses in journal bearing lubricants and the effect of cavitation. Wear 67(1), 15–24 (1981)

    Google Scholar 

  45. Sithole, H., Mondal, H., Goqo, S., Sibanda, P., Motsa, S.: Numerical simulation of couple stress nanofluid flow in magnetoporous medium with thermal radiation and a chemical reaction. Appl. Math. Comput. 339, 820–836 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Srinivasacharya, D., Kaladhar, K.: Mixed convection flow of couple stress fluid in a non-darcy porous medium with soret and dufour effects. Journal of Porous Media 15(4), 415–422 (2012)

    Google Scholar 

  47. Srinivasacharya, D., Rao, G.M.: Mathematical model for blood flow through a bifurcated artery using couple stress fluid. Math. Biosci. 278, 37–47 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Stokes, V.K.: Couple stresses in fluids. Phys. Fluids 9(9), 1709–1715 (1966)

    Google Scholar 

  49. Wang, X., Zhu, K., Gui, C.: A study of a journal bearing lubricated by couple stress fluids considering thermal and cavitation effects. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 216(5), 293–305 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mlamuli Dhlamini, Hiranmoy Mondal, prepared original drafts of the research article and also write the methodology. Using the software validate our results. Prof. Sibanda and Prof. Motsa edited and review of our article

Corresponding author

Correspondence to Hiranmoy Mondal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhlamini, M., Mondal, H., Sibanda, P. et al. Numerical Analysis of Couple Stress Nanofluid in Temperature Dependent Viscosity and Thermal Conductivity. Int. J. Appl. Comput. Math 7, 48 (2021). https://doi.org/10.1007/s40819-021-00983-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-00983-x

Keywords

PACS

Navigation