Skip to main content
Log in

Combined Effect of Radiation and Inclined MHD Flow of a Micropolar Fluid Over a Porous Stretching/Shrinking Sheet with Mass Transpiration

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The present investigation is focused on the study of a micropolar flow in a porous medium subject to inclined magnetic field, mass transpiration and internal radiation. The analytical solutions of the flow and temperature fields were derived in closed forms for the first time here by using similarity transformations. The transformed velocity, microrotation and temperature fields were plotted and analyzed for a number of relative dimensionless parameters, while skin friction coefficient and Nusselt number were also calculated and discussed. The results showed that the micropolar flow may accelerate or decelerate depending on the effect of porous medium, the mass transpiration, the radiation and the inclined applied magnetic field. Moreover, heat transfer may enhanced or diminished depending on the same phenomena. The present analytical results are anticipated to be of great significance regarding the effect of important MHD and heat transfer parameters on micropolar fluids and they can be used in a variety of industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

c p :

Specific heat coefficient \(\left(J{ kg}^{-1}{K}^{-1}\right)\)

d :

Stretching/Shrinking parameter

Da 1 :

Inverse Darcy number

f :

Dimensionless stream function

g :

Dimensionless microrotation

j :

Microinertia per unit mass \(\left({kg m}^{2}\right)\)

K :

Material parameter/micropolar parameter

k :

Medium permeability \(\left({m}^{2}\right)\)

k 1 :

Absorption coefficient

N r :

Thermal radiation parameter

Pr :

Prandtl number

Q :

Chandrasekhar number

q r :

Radiative heat flux \(\left(W {m}^{-2}\right)\)

T :

Temperature \(\left(K\right)\)

T w :

Temperature at the sheet \(\left(K\right)\)

T :

Free-stream temperature \(\left(K\right)\)

u :

Velocity component in \(x\) direction \(\left(m {s}^{-1}\right)\)

u w :

Stretching/Shrinking velocity of the sheet \(\left(m {s}^{-1}\right)\)

v :

Velocity component in \(y\) direction \(\left(m {s}^{-1}\right)\)

V c :

Wall mass transfer parameter

v k :

Kinematic viscosity \(\left({m}^{2}{ s}^{-1}\right)\)

v w :

Wall mass transfer velocity \(\left(m {s}^{-1}\right)\)

x :

Distance along the sheet \(\left(m\right)\)

y :

Distance perpendicular to the sheet \(\left(m\right)\)

α :

Non-negative sheet constant \(\left({s}^{-1}\right)\)

γ :

Spin-gradient viscosity \(\left(kg m{ s}^{-1}\right)\)

δ :

Wall coefficient \(0\le \delta \le 1\)

:

=Qsin2τ+Da1

η :

Similarity variable

θ:

Dimensionless temperature

κ :

Gyro-viscosity \(\left(kg {m}^{-1}{ s}^{-1}\right)\)

λ :

Thermal conductivity \(\left(W{ m}^{-1}{K}^{-1}\right)\)

μ :

Dynamic viscosity \(\left(kg {m}^{-1}{ s}^{-1}\right)\)

ρ :

Fluid density \(\left(kg {m}^{-3}\right)\)

σ* :

Strefan-Boltzman constant \(\left(W{ m}^{-2}{K}^{-4}\right)\)

τ :

Angle of the inclined magnetic field \(\left(rad\right)\)

ψ :

Stream function \(\left({m}^{2}{ s}^{-1}\right)\)

Ω:

Microrotation \(\left({s}^{-1}\right)\)

w :

Boundary condition at the sheet

∞:

Free stream boundary condition

References

  1. Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2(2), 205–217 (1964)

    Article  MathSciNet  Google Scholar 

  2. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech., 1–18, (1966)

  3. Borrelli, A., Giantesio, G., Patria, M.C.: Magnetoconvection of a micropolar fluid in a vertical channel. Int. J. Heat Mass Transf. 80, 614–625 (2015)

    Article  Google Scholar 

  4. Ismail, H.N.A., Abourabia, A.M., Hammad, D.A., Ahmed, N.A., El Desouky, A.A.: On the MHD flow and heat transfer of a micropolar fluid in a rectangular duct under the effects of the induced magnetic field and slip boundary conditions. SN Appl. Sci. 2(1), 25 (2019)

    Article  Google Scholar 

  5. Mahabaleswar, U.S.: Combined effect of temperature and gravity modulations on the onset of magneto-convection in weak electrically conducting micropolar liquids. Int. J. Eng. Sci. 45(2), 525–540 (2007)

    Article  MathSciNet  Google Scholar 

  6. Siddheshwar, P., Mahabaleshwar, U.: Analytical solution to the MHD flow of micropolar fluid over a linear stretching sheet. Int. J. Appl. Mech. 20(2), 397–406 (2015)

    Article  Google Scholar 

  7. Abro, K.A., Khan, I., Gómez-Aguilar, J.F.: Thermal effects of magnetohydrodynamic micropolar fluid embedded in porous medium with Fourier sine transform technique. J. Braz. Soc. Mech. Sci. Eng. 41(4), 174 (2019)

    Article  Google Scholar 

  8. Lukaszewicz, G.: Micropolar fluids: theory and applications. Springer, Berlin (1999)

    Book  Google Scholar 

  9. Mahabaleswar, U.S.: External regulation of convection in a weak electrically conducting non-Newtonian liquid with g-jitter. J. Magn. Magn. Mater. 320(6), 999–1009 (2008)

    Article  Google Scholar 

  10. Siddheshwar, P.G., Mahabaleswar, U.S.: Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet. Int. J. Non. Linear Mech. 40(6), 807–820 (2005)

    Article  Google Scholar 

  11. Eringen, A.C.: Microcontinuum field theorie: I. Foundations and solids. Springer, New York (2012)

    MATH  Google Scholar 

  12. Eringen, A.C.: Microcontinuum field theories: II. Springer, New York (2001)

    MATH  Google Scholar 

  13. Ashraf, M., Jameel, N., Ali, K.: MHD non-Newtonian micropolar fluid flow and heat transfer in channel with stretching walls. Appl. Math. Mech. (English Ed.) 34(10), 1263–1276 (2013)

    Article  MathSciNet  Google Scholar 

  14. Murty, Y.N.: Effect of throughflow on magneto-convection in micropolar fluids. Appl. Math. Comput. 123(2), 249–261 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Shehzad, S.A., Khan, S., Abbas, Z., Rauf, A.: A revised Cattaneo-Christov micropolar viscoelastic nanofluid model with combined porosity and magnetic effects. Appl. Math. Mech. (English Ed.) 41(3), 521–532 (2020)

    Article  Google Scholar 

  16. Arifuzzaman, S., Mehedi, M.F.U., Al-Mamun, A., Biswas, P., Islam, M.K., Khan, M.: Magnetohydrodynamic micropolar fluid flow in presence of nanoparticles through porous plate: a numerical study. Int. J. Heat Technol. 36(3), 936–948 (2018)

    Article  Google Scholar 

  17. Abd-El Aziz, M.: Thermal radiation effects on magnetohydrodynamic mixed convection flow of a micropolar fluid past a continuously moving semi-infinite plate for high temperature differences. Acta Mech. 187(1–4), 113 (2006)

    Article  Google Scholar 

  18. Mittal, A.S., Patel, H.R., Darji, R.R.: Mixed convection micropolar ferrofluid flow with viscous dissipation, joule heating and convective boundary conditions. Int. Commun. Heat Mass Transf. 108, 104320 (2019)

    Article  Google Scholar 

  19. Rafique, K., Anwar, M.I., Misiran, M., Khan, I., Seikh, A.H., Sherif, E.-S.M., Nisar, K.S.: Numerical analysis with keller-box scheme for stagnation point effect on flow of micropolar nanofluid over an inclined surface. Symmetry 11(11), 1379 (2019)

    Article  Google Scholar 

  20. Heruska, M.W., Watson, L.T., Sankara, K.K.: Micropolar flow past a porous stretching sheet. Comput Fluids 14(2), 117–129 (1986)

    Article  MathSciNet  Google Scholar 

  21. Hassanien, I.: Boundary layer flow and heat transfer on a continuous accelerated sheet extruded in an ambient micropolar fluid. Int. Commun. Heat Mass Transf. 25(4), 571–583 (1998)

    Article  MathSciNet  Google Scholar 

  22. Kelson, N.A., Desseaux, A.: Effect of surface conditions on flow of a micropolar fluid driven by a porous stretching sheet. Int. J. Eng. Sci. 39(16), 1881–1897 (2001)

    Article  Google Scholar 

  23. Bhattacharyya, K., Mukhopadhyay, S., Layek, G., Pop, I.: Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet. Int. J. Heat Mass Transf. 55(11–12), 2945–2952 (2012)

    Article  Google Scholar 

  24. Turkyilmazoglu, M.: A note on micropolar fluid flow and heat transfer over a porous shrinking sheet. Int. J. Heat Mass Transf. 72, 388–391 (2014)

    Article  Google Scholar 

  25. Turkyilmazoglu, M.: Mixed convection flow of magnetohydrodynamic micropolar fluid due to a porous heated/cooled deformable plate: exact solutions. Int. J. Heat Mass Transf. 106, 127–134 (2017)

    Article  Google Scholar 

  26. Patel, H.R., Mittal, A.S., Darji, R.R.: MHD flow of micropolar nanofluid over a stretching/shrinking sheet considering radiation. Int. Commun. Heat Mass Transf. 108, 104322 (2019)

    Article  Google Scholar 

  27. Hussanan, A., Salleh, M.Z., Khan, I., Tahar, R.M.: Heat and mass transfer in a micropolar fluid with Newtonian heating: an exact analysis. Neural Comput. Appl. 29(6), 59–67 (2018)

    Article  Google Scholar 

  28. Rosseland, S.: Astrophysik und atom-theoretische Grundlagen. Springer, New York (1931)

    Book  Google Scholar 

  29. Ahmadi, G.: Self-similar solution of imcompressible micropolar boundary layer flow over a semi-infinite plate. Int. J. Eng. Sci. 14(7), 639–646 (1976)

    Article  Google Scholar 

  30. Aslani, K.-E., Benos, L., Tzirtzilakis, E., Sarris, I.E.: Micromagnetorotation of MHD micropolar flows. Symmetry 12(1), 148 (2020)

    Article  Google Scholar 

  31. Lu, D., Kahshan, M., Siddiqui, A.: Hydrodynamical study of micropolar fluid in a porous-walled channel: application to flat plate dialyzer. Symmetry 11(4), 541 (2019)

    Article  Google Scholar 

  32. Crane, L.J.: Flow past a stretching plate. Z. Angew. Math. Phys. 21(4), 645–647 (1970)

    Article  Google Scholar 

  33. Ahmad, R.: Magneto-hydrodynamics of coupled fluid–sheet interface with mass suction and blowing. J. Magn. Magn. Mater. 398, 148–159 (2016)

    Article  Google Scholar 

  34. Ahmad, R.: Analysis of homogeneous/non-homogeneous nanofluid models accounting for nanofluid-surface interactions. Phys. Fluids 28(7), 072002 (2016)

    Article  Google Scholar 

  35. Shahzad, A., Ali, R., Khan, M.: On the exact solution for axisymmetric flow and heat transfer over a nonlinear radially stretching sheet. Chin. Phys. Lett. 29(8), 084705 (2012)

    Article  Google Scholar 

  36. Benos, L.T., Polychronopoulos, N.D., Mahabaleshwar, U.S., Lorenzini, G., Sarris, I.E.: Thermal and flow investigation of MHD natural convection in a nanofluid-saturated porous enclosure: an asymptotic analysis. J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-09165-w

    Article  Google Scholar 

  37. Reddy, M.G.: Heat generation and thermal radiation effects over a stretching sheet in a micropolar fluid. ISRN Thermodyn. 2012, 6 (2012)

    Google Scholar 

  38. Nazar, R., Amin, N., Filip, D., Pop, I.: Stagnation point flow of a micropolar fluid towards a stretching sheet. Int. J. Non. Linear Mech. 39(7), 1227–1235 (2004)

    Article  Google Scholar 

  39. Zaimi, K., Ishak, A., Pop, I.: Flow past a permeable stretching/shrinking sheet in a nanofluid using two-phase model. PLoS ONE 9(11), e111743 (2014)

    Article  Google Scholar 

  40. Merkin, J.: On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 20(2), 171–179 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work has been supported by the Special Account for Research Grants (SARG), University of West Attica (grant number 80781/54613).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology were made by U.S.M. and J.S. Literature review was made by U.S.M. and K-E.A. Validation of the mathematical model, results and original draft preparation were made by K-E.A. Review, editing and supervision were made by I.E.S. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kyriaki-Evangelia Aslani.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslani, KE., Mahabaleshwar, U.S., Singh, J. et al. Combined Effect of Radiation and Inclined MHD Flow of a Micropolar Fluid Over a Porous Stretching/Shrinking Sheet with Mass Transpiration. Int. J. Appl. Comput. Math 7, 60 (2021). https://doi.org/10.1007/s40819-021-00987-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-00987-7

Keywords

Navigation