Skip to main content
Log in

Heat and Mass Transfer Assessment of Magnetic Hybrid Nanofluid Flow via Bidirectional Porous Surface with Volumetric Heat Generation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The theme of this article is to assess the impact of MHD flow of SWCNT + Ag + H2O hybrid nanofluid via a bidirectional porous stretchable sheet having volumetric heat generation and chemical reaction of higher order. The governing equations of the flow problem for working fluid are tackled by with RKF-4th and 5th order technique. The features of heat transfer, mass diffusion and fluid flow are depicted in the range of power law index number,\(1 \le n \le 6\); Hartmann number,\(0.1 \le Ha \le 0.6\); internal heat generation,\(0.1 \le H \le 2.2\); chemical reaction,\(0.5 \le \Omega \le 4\); chemical reaction order (\(1 \le q \le 9\)) and nanoparticles volume fractions varies from 2 to 10%, and remaining parameters are fixed. The upshots of the current problem illustrate that with increase in volume fraction of hybrid nanofluid, thermal field function increases, while both velocity functions declined. Moreover, Nusselt number function is reduced with increase in volumetric heat generation and increases with order of chemical reaction for \(n = 1\) and \(n = 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Choi, S.: Enhancing thermal conductivity of fluids with nano-particles. ASME, FED 231, 99–105 (1995)

    Google Scholar 

  2. Suresh, S., Venkitaraj, K.P., Selvakumar, P., Chandrasekar, M.: Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp. Therm. Fluid Sci. 38, 54–60 (2012)

    Article  Google Scholar 

  3. Esfe, M.H., Wongwises, S., Naderi, A., Asadi, A., Safaei, M.R., Rostamian, H., Dahari, M., Karimipour, A.: Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. Int. Commun. Heat Mass Transf. 66, 100–104 (2015)

    Article  Google Scholar 

  4. Soltani, O., Akbari, M.: Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: experimental study. Phys. E Low Dim. Syst. Nanostruct. 84, 564–570 (2016)

    Article  Google Scholar 

  5. Babu, J.R., Kumar, K.K., Rao, S.S.: State-of-art review on hybrid nanofluids. Renew. Sustain. Energy Reviews 77, 551–565 (2017)

    Article  Google Scholar 

  6. Hayat, T., Nadeem, S.: Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Res. Phys. 7, 2317–2324 (2017)

    Google Scholar 

  7. Waini, I., Ishak, A., Pop, I.: Hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface. Int. J. Numer. Methods Heat Fluid Flow. 29(9), 3110–3127 (2019)

    Article  Google Scholar 

  8. Crane, L.J.: Flow past a stretching plate. J. Appl. Math. Phys. ZAMP 21(4), 645–647 (1970)

    Google Scholar 

  9. Wang, C.Y.: The three-dimensional flow due to a stretching flat surface. Phys. Fluids 27(8), 1915–1917 (1984)

    Article  MathSciNet  Google Scholar 

  10. Khan, J.A., Mustafa, M., Hayat, T., Farooq, M.A., Alsaedi, A., Liao, S.J.: On model for three-dimensional flow of nanofluid: An application to solar energy. J. Molec. Liq. 194, 41–47 (2014)

    Article  Google Scholar 

  11. Hussain, Z., Hayat, T., Alsaedi, A., Ahmad, B.: Three-dimensional convective flow of CNTs nanofluids with heat generation/absorption effect: a numerical study. Comput. Meth. Appl. Mech. Eng. 329, 40–54 (2018)

    Article  MathSciNet  Google Scholar 

  12. Kumar, R., Kumar, R., Sheikholeslami, M., Chamkha, A.J.: Irreversibility analysis of the three dimensional flow of carbon nanotubes due to nonlinear thermal radiation and quartic chemical reactions. J. Molec. Liq. 274, 379–392 (2019)

    Article  Google Scholar 

  13. Nadeem, S., Hayat, T., Khan, A.U.: Numerical study of 3D rotating hybrid SWCNT–MWCNT flow over a convectively heated stretching surface with heat generation/absorption. Phys. Scr. 94(7), 075202 (2019)

    Article  Google Scholar 

  14. Upreti, H., Pandey, A.K., Kumar, M., Makinde, O.D.: Ohmic heating and non-uniform heat source/sink roles on 3D Darcy-Forchheimer flow of CNTs nanofluids over a stretching surface. Arabian J. Sci. Eng. 45(9), 7705–7717 (2020)

    Article  Google Scholar 

  15. Partha, M.K., Murthy, P.V.S.N., Rajasekhar, G.P.: Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface. Heat Mass transf. 41(4), 360–366 (2005)

    Article  Google Scholar 

  16. Kandasamy, R., Periasamy, K., Prabhu, K.S.: Chemical reaction, heat and mass transfer on MHD flow over a vertical stretching surface with heat source and thermal stratification effects. Int. J. Heat Mass Transf. 48(21–22), 4557–4561 (2005)

    Article  Google Scholar 

  17. Mansour, M.A., El-Anssary, N.F., Aly, A.M.: Effects of chemical reaction and thermal stratification on MHD free convective heat and mass transfer over a vertical stretching surface embedded in a porous media considering Soret and Dufour numbers. Chem. Eng. J. 145(2), 340–345 (2008)

    Article  Google Scholar 

  18. Mukhopadhyay, S.: Effect of thermal radiation on unsteady mixed convection flow and heat transfer over a porous stretching surface in porous medium. Int. J. Heat Mass Transf. 52(13–14), 3261–3265 (2009)

    Article  Google Scholar 

  19. Kameswaran, P.K., Shaw, S., Sibanda, P.V.S.N., Murthy, P.V.S.N.: Homogeneous–heterogeneous reactions in a nanofluid flow due to a porous stretching sheet. Int. J. Heat Mass Transf. 57(2), 465–472 (2013)

    Article  Google Scholar 

  20. Hayat, T., Hussain, Z., Alsaedi, A., Mustafa, M.: Nanofluid flow through a porous space with convective conditions and heterogeneous–homogeneous reactions. J. Taiwan Inst. Chem. Eng. 70, 119–126 (2017)

    Article  Google Scholar 

  21. Pandey, A.K., Kumar, M.: Natural convection and thermal radiation influence on nanofluid flow over a stretching cylinder in a porous medium with viscous dissipation. Alexandria Eng. J. 56(1), 55–62 (2017)

    Article  MathSciNet  Google Scholar 

  22. Upreti, H., Kumar, M.: Influence of non-linear radiation, Joule heating and viscous dissipation on the boundary layer flow of MHD nanofluid flow over a thin moving needle. Multi. Model. Mater. Struct. 16(1), 208–224 (2019)

    Article  Google Scholar 

  23. Upreti, H., Pandey, A.K., Kumar, M.: Thermophoresis and suction/injection roles on free convective MHD flow of Ag–kerosene oil nanofluid. J. Comput. Design Eng. 7(3), 386–396 (2020)

    Article  Google Scholar 

  24. Takabi, B., Salehi, S.: Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Advan. Mech. Eng. 6, 147059 (2014)

    Article  Google Scholar 

  25. Jayadevamurthy, P.G.R., Rangaswamy, N.K., Prasannakumara, B.C., Nisar, K.S.: Emphasis on unsteady dynamics of bioconvective hybrid nanofluid flow over an upward–downward moving rotating disk. Numer. Meth. Part. Differ. Eq. (2020). https://doi.org/10.1002/num.22680

    Article  Google Scholar 

  26. Singh, B., Nisar, K.S.: Thermal instability of magnetohydrodynamic couple stress nanofluid in rotating porous medium. Numer. Meth. Part. Differ. Eq. (2020). https://doi.org/10.1002/num.22614

    Article  Google Scholar 

  27. Lund, L.A., Omar, Z., Dero, S., Khan, I., Baleanu, D., Nisar, K.S.: Magnetized flow of Cu+Al2O3+H2O hybrid nanofluid in porous medium: Analysis of duality and stability. Symmetry 12(9), 1513 (2020). https://doi.org/10.3390/sym12091513

    Article  Google Scholar 

  28. Rasool, G., Shafiq, A., Khan, I., Baleanu, D., Nisar, K.S., Shahzadi, G.: Entropy generation and consequences of MHD in Darcy-Forchheimer nanofluid flow bounded by non-linearly stretching surface. Symmetry 12(4), 652 (2020)

    Article  Google Scholar 

  29. Waqas, H., Imran, M., Hussain, S., Ahmad, F., Khan, I., Nisar, K.S., Almatroud, A.O.: Numerical simulation for bioconvection effects on MHD flow of Oldroyd-B nanofluids in a rotating frame stretching horizontally. Math. Comput. Simulat. 178, 166–182 (2020)

    Article  MathSciNet  Google Scholar 

  30. Saqib, M., Khan, I., Chu, Y.M., Qushairi, A., Shafie, S., Nisar, K.S.: Multiple fractional solutions for magnetic bio-nanofluid using Oldroyd-B model in a porous medium with ramped wall heating and variable velocity. Appl. Sciences 10(11), 3886 (2020)

    Article  Google Scholar 

  31. Nisar, K.S., Khan, U., Zaib, A., Khan, I., Baleanu, D.: Exploration of aluminum and titanium alloys in the stream-wise and secondary flow directions comprising the significant impacts of magnetohydrodynamic and hybrid nanofluid. Curr. Comput.-Aided Drug Des. 10(8), 679 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors wish to convey their sincere gratitude to reviewers for their precious remarks to upgrade the quality of this research paper.

Funding

No funding is available for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kumar Pandey.

Ethics declarations

Competing interests

The authors state that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, N., Upreti, H., Pandey, A.K. et al. Heat and Mass Transfer Assessment of Magnetic Hybrid Nanofluid Flow via Bidirectional Porous Surface with Volumetric Heat Generation. Int. J. Appl. Comput. Math 7, 64 (2021). https://doi.org/10.1007/s40819-021-00999-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-00999-3

Keywords

Navigation