Skip to main content
Log in

A Novel Numerical Approach for Simulating the Nonlinear MHD Jeffery–Hamel Flow Problem

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The present study is related to the numerical simulation of the well-known Jeffery Hamel blood flow problem of nonlinear form. For the numerical solutions of the designed model, a Bernoulli collocation method is implemented. The method is based on converting the model into a system of a nonlinear algebraic equation which is then solved using a novel iterative technique. To check the perfection and exactness of the proposed schemes, two novel residual error correction methods are illustrated to ensure that the method is effective. The method does not require any extensive computational time while providing good results. Some numerical simulations are provided and a comparison is made with other existing methods from the literature. From these results, it can be seen that the Bernoulli collocation method is effective yet simple in providing accurate results for such a model. The method can be extended in the near future for solving similar other problems with applications in both science and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included.

References

  1. Jeffery, G.B.: The two-dimensional steady motion of a viscous fluid. Nonlinear Dyn. 5(1), 101–109 (2009)

    Google Scholar 

  2. Moghimi, S.M., Domairry, G., Soleimani, S., Ghasemi, E., Bararnia, H.: Application of homotopy analysis method to solve MHD Jeffery–Hamel flows in non-parallel walls. Adv. Eng. Softw. 42(3), 108–113 (2011)

    Article  Google Scholar 

  3. Esmaeilpour, M., Ganji, D.D.: Solution of the Jeffery–Hamel flow problem by optimal homotopy asymptotic method. Comput. Math. Appl. 59(11), 3405–3411 (2010)

    Article  MathSciNet  Google Scholar 

  4. Joneidi, A.A., Domairry, G., Babaelahi, M.: Three analytical methods applied to Jeffery–Hamel flow. Commun. Nonlinear Sci. Numer. Simul. 15(11), 3423–3434 (2010)

    Article  Google Scholar 

  5. Moghimi, S.M., Ganji, D.D., Bararnia, H., Hosseini, M., Jalaal, M.: Homotopy perturbation method for nonlinear MHD Jeffery–Hamel Problem. Comput. Math. Appl. 61(8), 2213–2216 (2011)

    Article  MathSciNet  Google Scholar 

  6. Esmaili, Q., Ramiar, A., Alizadeh, E., Ganji, D.D.: An approximation of the analytical solution of the Jeffery–Hamel flow by decomposition method. Phys. Lett. A 372(19), 3434–3439 (2008)

    Article  Google Scholar 

  7. Motsa, S.S., Sibanda, P., Awad, F.G., Shateyi, S.: A new spectral-homotopy analysis method for the MHD Jeffery–Hamel problem. Comput. Fluids 39(7), 1219–1225 (2010)

    Article  MathSciNet  Google Scholar 

  8. Howarth, L. (ed.): Modern Developments in Fluid Dynamics—High Speed Flow. Am. J. Phys. 22(7), 504 (1954)

  9. Axford, W.I.: The magnetohydrodynamic Jeffrey-Hamel problem for a weakly conducting fluid. Q. J. Mech. Appl. Math. 14(3), 335–351 (1961)

    Article  MathSciNet  Google Scholar 

  10. Abbasbandy, S., Shivanian, E.: Exact analytical solution of the MHD Jeffery–Hamel flow problem. Meccanica 47(6), 1379–1389 (2012)

    Article  MathSciNet  Google Scholar 

  11. Makinde, O.D.: Effect of arbitrary magnetic Reynolds number on MHD flows in convergent-divergent channels. Int. J. Numer. Methods Heat Fluid Flow (2008). https://doi.org/10.1108/09615530810885524

    Article  MathSciNet  MATH  Google Scholar 

  12. Makinde, O.D., Mhone, P.Y.: Hermite-Padé approximation approach to MHD Jeffery–Hamel flows. Appl. Math. Comput. 181(2), 966–972 (2006)

    MATH  Google Scholar 

  13. Mustafa, I., Akgül, A., Kılıçman, A.: A new application of the reproducing kernel Hilbert space method to solve MHD Jeffery–Hamel flows problem in nonparallel walls. Abstr. Appl. Anal. 2013(SI50), 1–12 (2013). (Hindawi)

    MathSciNet  MATH  Google Scholar 

  14. Ali, L., Islam, S., Gul, T.: Modified optimal homotopy perturbation method to investigate Jeffery–Hamel flow. Punjab Univ. J. Math. 51(11), 17–29 (2019)

    MathSciNet  Google Scholar 

  15. Mehmood, A., Zameer, A., Ling, S.H., Raja, M.A.Z.: Design of neuro-computing paradigms for nonlinear nanofluidic systems of MHD Jeffery–Hamel flow. J. Taiwan Inst. Chem. Eng. 91, 57–85 (2018)

    Article  Google Scholar 

  16. Bararnia, H., Ganji, Z.Z., Ganji, D.D., Moghimi, S.M.: Numerical and analytical approaches to MHD Jeffery–Hamel flow in a porous channel. Int. J. Numer. Methods Heat Fluid Flow (2012). https://doi.org/10.1108/09615531211215774

    Article  MATH  Google Scholar 

  17. Raja, M.A.Z., Samar, R.: Numerical treatment for nonlinear MHD Jeffery–Hamel problem using neural networks optimized with interior point algorithm. Neurocomputing 124, 178–193 (2014)

    Article  Google Scholar 

  18. Iqbal, M.A., Khan, U., Ali, A., Mohyud-Din, S.T.: Shifted Chebyshev wavelet-quasilinearization technique for MHD squeezing flow between two infinite plates and Jeffery–Hamel flows. Egypt. J. Basic Appl. Sci. 2(3), 229–235 (2015)

    Google Scholar 

  19. Singh, J., Shishodia, Y.S.: A modified analytical technique for Jeffery-Hamel flow using sumudu transform. J. Assoc. Arab. Univ. Basic Appl. Sci. 16, 11–15 (2014)

    Google Scholar 

  20. Raja, M.A.Z., Samar, R.: Numerical treatment of nonlinear MHD Jeffery–Hamel problems using stochastic algorithms. Comput. Fluids 91, 28–46 (2014)

    Article  MathSciNet  Google Scholar 

  21. Dib, A., Haiahem, A., Bou-Said, B.: An analytical solution of the MHD Jeffery–Hamel flow by the modified Adomian decomposition method. Comput. Fluids 102, 111–115 (2014)

    Article  MathSciNet  Google Scholar 

  22. Bougoffa, L., Mziou, S., Rach, R.C.: Exact and approximate analytic solutions of the Jeffery–Hamel flow problem by the Duan-Rach modified Adomian decomposition method. Math. Model. Anal. 21(2), 174–187 (2016)

    Article  MathSciNet  Google Scholar 

  23. Nourazar, S., Dehghanpour, H.R., Ramezani, M.: A novel semi-analytical solution to Jeffery-Hamel equation. J. Phys. Commun. (2020). https://doi.org/10.1088/2399-6528/aba034

    Article  Google Scholar 

  24. Mahmood, A., Md Faisal, Md., Basir, U.A., Kasihmuddin, M.S.M., Mansor, M.: Numerical solutions of heat transfer for magnetohydrodynamic Jeffery–Hamel flow using spectral homotopy analysis method. Processes 7(9), 626 (2019)

    Article  Google Scholar 

  25. Uddhaba, B., Chakraverty, S.: Investigation of Jeffery–Hamel flow for nanofluid in the presence of magnetic field by a new approach in the optimal homotopy analysis method. J. Appl. Comput. Mech. (2020). https://doi.org/10.22055/JACM.2020.31909.1937

    Article  Google Scholar 

  26. Torkaman, S., Heydari, M., Loghmani, G.B., Ganji, D.D.: Barycentric rational interpolation method for numerical investigation of magnetohydrodynamics nanofluid flow and heat transfer in nonparallel plates with thermal radiation. Heat Transf. Asian Res. 49(1), 565–590 (2020)

    Article  Google Scholar 

  27. Al-Jawary, M.A., Ibraheem, G.H.: Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences. Nonlinear Eng. 9(1), 244–255 (2020)

    Article  Google Scholar 

  28. Bhalekar, S., Daftardar-Gejji, V.: Convergence of the new iterative method. Int. J. Differ. Equ. (2011). https://doi.org/10.1155/2011/989065

    Article  MathSciNet  MATH  Google Scholar 

  29. Majeed, A.J., Nabi, A.Z.J.: Three iterative methods for solving Jeffery–Hamel flow problem. Kuwait J. Sci. 47(1), 1–13 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Jasim‎, A.M.: New Analytical study for nanofluid between two non-parallel‎ plane Walls (Jeffery–Hamel Flow)‎. J. Appl. Comput. Mech. 7(1), 213–224 (2021)

    MathSciNet  Google Scholar 

  31. El-Gamel, M., Adel, W., El-Azab, M.S.: Collocation method based on Bernoulli polynomial and shifted Chebychev for solving the Bratu equation. J. Appl. Comput. Math (2018). https://doi.org/10.4172/2168-9679.1000407

    Article  Google Scholar 

  32. El-Gamel, M., Adel, W.: On singular boundary value problem in one-space dimension. Math. Nat. Sci. 6(1), (2020)

  33. Adel, W., Sabir, Z.: Solving a new design of nonlinear second-order Lane-Emden pantograph delay differential model via Bernoulli collocation method. Eur. Phys. J. Plus 135(6), 427 (2020)

    Article  Google Scholar 

  34. El-Gamel, M., Adel, W., El-Azab, M.S.: Bernoulli polynomial and the numerical solution of high-order boundary value problems. Math. Nat. Sci. 4(01), 45–59 (2019)

    Article  Google Scholar 

  35. El-Gamel, M.: Two Very accurate and efficient methods for solving time-dependent problems. Appl. Math. 9(11), 1270 (2018)

    Article  Google Scholar 

  36. Waleed, A.: A fast and efficient scheme for solving a class of nonlinear Lienard’s equations. Math. Sci. 14(2), 167–175 (2020)

    Article  MathSciNet  Google Scholar 

  37. Adel, W., Rezazadeh, H., Eslami, M., Mirzazadeh, M.: A numerical treatment of the delayed Ambartsumian equation over large interval. J. Interdiscip. Math. 23(6), 1077–1091 (2020)

    Article  Google Scholar 

  38. Ganji, R.M., Jafari, H., Baleanu, D.: A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel. Chaos Solitons Fractals 130, 109405 (2020)

    Article  MathSciNet  Google Scholar 

  39. Jafari, H., Tuan, N.A., Ganji, R.M.: A new numerical scheme for solving pantograph type nonlinear fractional integro-differential equations. J. King Saud Univ. Sci. 33(1), 101185 (2021)

    Article  Google Scholar 

  40. Tuan, N.H., Nemati, S., Ganji, R.M., Jafari, H.: Numerical solution of multi-variable order fractional integro-differential equations using the Bernstein polynomials. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01142-4

    Article  Google Scholar 

  41. Ganji, R.M., Jafari, H.: A new approach for solving nonlinear Volterra integro-differential equations with Mittag-Leffler kernel. Proc. Inst. Math. Mech. 46(1), 144–158 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Ganji, R.M., Jafari, H.: Numerical solution of variable order integro-differential equations. Adv. Math. Models Appl. 4(1), 64–69 (2019)

    Google Scholar 

  43. Jafari, H.: A new general integral transform for solving integral equations. J. Adv. Res. (2020). https://doi.org/10.1016/j.jare.2020.08.016

    Article  Google Scholar 

  44. Ganji, D.D., Sheikholeslami, M., Ashorynejad, H.R.: Analytical approximate solution of nonlinear differential equation governing Jeffery–Hamel flow with high magnetic field by Adomian decomposition method. Int. Sch. Res. Not. (2011). https://doi.org/10.5402/2011/937830

    Article  MATH  Google Scholar 

  45. Oğuz, C., Sezer, M.: Chelyshkov collocation method for a class of mixed functional integrodifferential equations. Appl. Math. Comput. 259, 943–954 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Nourazar, S., Dehghanpour, H.R., Ramezani, M.: A novel semi-analytical solution to Jeffery–Hamel equation. J. Phys. Commun. 4(7), 075009 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees for their valuable suggestions and comments.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waleed Adel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adel, W., Biçer, K.E. & Sezer, M. A Novel Numerical Approach for Simulating the Nonlinear MHD Jeffery–Hamel Flow Problem. Int. J. Appl. Comput. Math 7, 74 (2021). https://doi.org/10.1007/s40819-021-01016-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01016-3

Keywords

Mathematics Subject Classification

Navigation