Skip to main content

Advertisement

Log in

Fractal Fractional Operator Method on HER2+ Breast Cancer Dynamics

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, an in vitro model of HER2+ breast cancer cells dynamics resulting from various dosages and timings of paclitaxel and trastuzumab combination regimens is considered. Since, the combined in vitro results and development of dynamics of drug synergy has a potential to evaluate and improve standard of care, then combination therapies in timings of paclitaxel and trastuzumab combination regimens, thus, HER2+ breast cancer cells dynamics are extended to a system of fractal fractional partial differential equations in order to enable one to capture the dynamics of the deadly breast cancer in terms of combination of the two therapies. Moreover, the well-posedness of solutions is presented and the extended dynamics are analysed to that effect. Since it is not that easy to obtain the analytic solution a novel numerical method based on fractal fractional derivatives is design, implemented and the results with respect to the stability conditions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Atangana, A.: Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos, Solitons Fractals 102, 396–406 (2017)

    Article  MathSciNet  Google Scholar 

  2. Atangana, A., Qureshi, S.: Modeling attractors of chaotic dynamical systems with fractal-fractional operators. Chaos, Solitons Fractals 123, 320–337 (2019)

    Article  MathSciNet  Google Scholar 

  3. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Thermal Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  4. Araz, S.I.: Numerical analysis of a new volterra integro-differential equation involving fractal-fractional operators. Chaos, Solitons Fractals 130, 109396 (2020)

    Article  MathSciNet  Google Scholar 

  5. Atangana, A., Owolabi, K.M.: New numerical approach for fractional differential equations, Math. Model. Natural Phenomena, 13 (2018) 21 pages. https://doi.org/10.1051/mmnp/2018010

  6. Bartel, C.A., Jackson, M.W.: HER2+ breast cancer cells expressing elevated FAM83A are sensitive to FAM83A loss. PLoS ONE 12(5), e0176778 (2017)

    Article  Google Scholar 

  7. Burden, R.L., Faires, J.D.: Numerical Analysis. Brooks/Cole, USA (2011)

    MATH  Google Scholar 

  8. Caputo, M.: Elasticità e dissipazione. Zanichelli, Bologna (1969)

    Google Scholar 

  9. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press, London (1956)

    MATH  Google Scholar 

  10. Chen, W., Sun, G., Zhanga, X., Koroãk, D.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59, 1754–1758 (2010)

  11. Goufo, E.F.D.: Fractal and fractional dynamics for a 3D autonomous and two-wing smooth chaotic system. Alexandria Eng. J. 59, 2469–2476 (2020)

    Article  Google Scholar 

  12. Hassett, M.J., Li, H., Burstein, H.J.: Neoadjuvant treatment strategies for HER2-positive breast cancer: cost-effectiveness and quality of life outcomes. Breast Cancer Res. Treat. 181, 43–51 (2020)

    Article  Google Scholar 

  13. Heydari, M.H.: Numerical solution of nonlinear 2D optimal control problems generated by Atangana-Riemann-Liouville fractal-fractional derivative. Appl. Numer. Math. 150, 507–518 (2020)

    Article  MathSciNet  Google Scholar 

  14. Imran, M.A.: Application of fractal fractional derivative of power law kernel to MHD viscous fluid flow between two plates. Chaos, Solitons Fractals 134, 109691 (2020)

    Article  MathSciNet  Google Scholar 

  15. Jarrett, A.M., Shah, A., Bloom, M.J., McKenna, M.T., Hormuth, D.A., Yankeelov, T.E., Sorace, A.G.: Experimentally-driven mathematical modeling to improve combination targeted and cytotoxic therapy for HER2+ breast cancer. Sci. Rep. 9, 12830 (2019)

    Article  Google Scholar 

  16. Jordan, D.W., Smith, P.: Nonlinear Ordinary Differential Equations. Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Netherlands (2006)

    MATH  Google Scholar 

  18. Lakhtakia, R., Burney, I.: A brief history of breast cancer. Sultan Qaboos Univ. Med. J. 15(1), e34–e38 (2015)

    Google Scholar 

  19. Luchko, Y.: Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351, 218–223 (2009)

    Article  MathSciNet  Google Scholar 

  20. Metzler, R., Barkai, E., Klafter, J.: Deriving fractional Fokker-Planck equations from a generalized master equation. Europhys. Lett. 46(4), 431–436 (1999)

    Article  MathSciNet  Google Scholar 

  21. Owolabi K.M., Patidar K.C., Shikongo A.: Mathematical analysis and numerical simulation of a tumor-host model with chemotherapy application. Commun. Math. Biol. Neurosci. 2018, Article ID 21 (2018)

  22. Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 2006(48391), 1–12 (2006)

    Article  MathSciNet  Google Scholar 

  23. Owolabi, K.M.: Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems. Chaos, Solitons Fractals 93, 89–98 (2016)

    Article  MathSciNet  Google Scholar 

  24. Owolabi, K.M.: Mathematical modelling and analysis of two-component system with Caputo fractional derivative order. Chaos, Solitons Fractals 103, 544–554 (2017)

    Article  MathSciNet  Google Scholar 

  25. Owolabi, K.M.: Numerical patterns in reaction-diffusion system with the Caputo and Atangana-Baleanu fractional derivatives. Chaos, Solitons Fractals 115, 160–169 (2018)

    Article  MathSciNet  Google Scholar 

  26. Palle, J., Rochand, A., Pernot, S.: Human epidermal growth factor receptor 2 (HER2) in advanced gastric cancer: Current knowledge and future perspectives. Drugs 80, 401–415 (2020)

    Article  Google Scholar 

  27. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  28. Podlubny, I., Chechkin, A.V., Skovranek, T., Chen, Y., Jara, B.M.V.: Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 228(8), 3137–3153 (2009)

    Article  MathSciNet  Google Scholar 

  29. Saichev, A., Zaslavsky, G.: Fractional kinetic equations: solutions and applications. Chaos 7(4), 753–764 (1997)

    Article  MathSciNet  Google Scholar 

  30. Xie, B., Zhu, L., Ma, C.: A network meta-analysis on the efficacy of HER2-targeted agents in combination with taxane-containing regimens for treatment of HER2-positive metastatic breast cancer. Breast Cancer 27, 186–196 (2020). https://doi.org/10.1007/s12282-019-01007-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all of the anonymous reviewers for their valuable suggestions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolade M. Owolabi.

Ethics declarations

Competing interests

The authors have no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owolabi, K.M., Shikongo, A. Fractal Fractional Operator Method on HER2+ Breast Cancer Dynamics. Int. J. Appl. Comput. Math 7, 85 (2021). https://doi.org/10.1007/s40819-021-01030-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01030-5

Keywords

Mathematics Subject Classification

Navigation