Skip to main content
Log in

Explicit and Approximate Solutions for the Conformable-Caputo Time-Fractional Diffusive Predator–Prey Model

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The aim of this work is twofold. First, we seek functional explicit solutions to the conformable-time fractional predator–prey model by adapting the extended Kudryashov method. Second, we find fractional power series solution to the same model when the fractional derivative is of Caputo type. Graphical analysis will be presented to serve two features; to recognize the physical shapes and the propagations of the predator–prey densities, and to observe the impact of the fractional derivatives acting in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)

    Article  MATH  Google Scholar 

  2. Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem. Bull. Moscow State Univ. Ser. A Math. Mech. 1(6), 1–25 (1937)

    Google Scholar 

  3. Fisher, R.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)

    Article  MATH  Google Scholar 

  4. Fagan, W.F., Lewis, M.A., Neubert, M.G., van den Driessche, P.: Invasion theory and biological control. Ecol. Lett. 5, 148–157 (2002)

    Article  Google Scholar 

  5. Frantzen, J., van den Bosch, F.: Spread of organisms: can travelling and dispersive waves be distinguished? Basic Appl. Ecol. 1, 83–91 (2000)

    Article  Google Scholar 

  6. Leach, J.A., Needham, D.J., Kay, A.L.: The evolution of reaction–diffusion waves in a class of scalar reaction–diffusion equations: algebraic decay rates. Physica D 167, 153–182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Petrovskii, S., Malchow, H., Li, B.L.: An exact solution of a diffusive predator–prey system. Proc. R. Soc. A 461, 1029–1053 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Poonia, M., Singh, K.: Exact traveling wave solutions of diffusive predator prey system using the first integral method. AIP Conf. Proc. 2214, 020027 (2020)

    Article  Google Scholar 

  9. Abdelrahman, M., Zahran, E., Khater, M.: The exp(\(-\phi (\zeta )\))-expansion method and its application for solving nonlinear evolution equations. Int. J. Mod. Nonlinear Theory Appl. 4, 37–47 (2015)

    Article  Google Scholar 

  10. Zayed, E.M., Amer, Y.A.: The modified simple equation method for solving nonlinear diffusive predator–prey system and Bogoyavlenskii equations. Int. J. Phys. Sci. 10, 133–141 (2015)

    Article  Google Scholar 

  11. Kraenkel, R.A., Manikandan, K., Senthilvelan, M.: On certain new exact solutions of a diffusive predator–prey system. Commun. Nonlinear Sci. Numer. Simul. 18, 1269–1274 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Seadawy, A.R., El-Rashidy, K.: Dispersive solitary wave solutions of Kadomtsev–Petviashvili and modified Kadomtsev–Petviashvili dynamical equations in unmagnetized dust plasma. Results Phys. 8, 1216–1222 (2018)

    Article  Google Scholar 

  13. Arshad, M., Seadawy, A.R., Lu, D.: Modulation stability and optical soliton solutions of nonlinear Schrodinger equation with higher order dispersion and nonlinear terms and its applications. Superlattices Microstruct. 112, 422–434 (2017)

    Article  Google Scholar 

  14. Arshad, M., Seadawy, A.R., Lu, D.: Elliptic function and solitary wave solutions of the higher-order nonlinear Schrodinger dynamical equation with fourth-order dispersion and cubic-quintic nonlinearity and its stability. Eur. Phys. J. Plus. 132, 371 (2017)

    Article  Google Scholar 

  15. Dianchen, L., Seadawy, A.R., Ali, A.: Applications of exact traveling wave solutions of modified Liouville and the symmetric regularized long wave equations via two new techniques. Results Phys. 9, 1403–1410 (2018)

    Article  Google Scholar 

  16. Helal, M.A., Seadawy, A.R., Zekry, M.H.: Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation. Appl. Math. Comput. 232, 1094–1103 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Lu, D., Seadawy, A.R., Ali, A.: Dispersive traveling wave solutions of the equal-width and modified equal-width equations via mathematical methods and its applications. Results Phys. 9, 313–320 (2018)

    Article  Google Scholar 

  18. Iqbal, M., Seadawy, A.R., Lu, D.: Construction of solitary wave solutions to the nonlinear modified Kortewege–de Vries dynamical equation in unmagnetized plasma via mathematical methods. Mod. Phys. Lett. A 33(32), 1850183 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ali, A., Seadawy, A.R., Lu, D.: Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur water wave dynamical equation via two methods and its applications. Open Phys. J. 16, 219–226 (2018)

    Article  Google Scholar 

  20. Alquran, M., Al-Khaled, K., Sivasundaram, S., Jaradat, H.M.: Mathematical and numerical study of existence of bifurcations of the generalized fractional Burgers–Huxley equation. Nonlinear Stud. 24(1), 235–244 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Ali, M., Alquran, M., Jaradat, I., Abu, Afouna N., Baleanu, D.: Dynamics of integer-fractional time-derivative for the new two-mode Kuramoto–Sivashinsky model. Rom. Rep. Phys. 72(1), 103 (2020)

    Google Scholar 

  22. Jaradat, H.M., Awawdeh, F., Al-Shara, S., Alquran, M., Momani, S.: Controllable dynamical behaviors and the analysis of fractal Burgers hierarchy with the full effects of inhomogeneities of media. Rom. J. Phys. 60(3–4), 324–343 (2015)

    Google Scholar 

  23. Alquran, M., Jarrah, A.: Jacobi elliptic function solutions for a two-mode KdV equation. J. King Saud Univ. Sci. 31(4), 485–489 (2019)

    Article  Google Scholar 

  24. Iqbal, M., Seadawy, A.R., Khalil, O.H., Lu, D.: Propagation of long internal waves in density stratified ocean for the \((2+1)\)-dimensional nonlinear Nizhnik–Novikov–Vesselov dynamical equation. Results Phys. 16, 102838 (2020)

    Article  Google Scholar 

  25. Seadawy, A.R., Iqbal, M., Lu, D.: Nonlinear wave solutions of the Kudryashov–Sinelshchikov dynamical equation in mixtures liquid–gas bubbles under the consideration of heat transfer and viscosity. J. Taibah Univ. Sci. 13(1), 1060–1072 (2019)

    Article  Google Scholar 

  26. Oskan, Y.S., Yasar, E., Seadawy, A.R.: A third-order nonlinear Schrodinger equation: the exact solutions, group-invariant solutions and conservation laws. J. Taibah Univ. Sci. 14(1), 585–597 (2020)

    Article  Google Scholar 

  27. Ahmad, H., Seadawy, A.R., Khan, T.A., Thounthong, P.: Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations. J. Taibah Univ. Sci. 14(1), 346–358 (2020)

    Article  Google Scholar 

  28. Farah, N., Seadawy, A.R., Ahmad, S., Rizvi, S.T., Younis, M.: Interaction properties of soliton molecules and Painleve analysis for nano bioelectronics transmission model. Opt. Quan Elec. 52(7), 1–15 (2020)

    Google Scholar 

  29. Yavus, M., Yokus, A.: Analytical and numerical approaches to nerve impulse model of fractional-order. Numer. Methods Partial. Differ. Equ. 36(6), 1348–1368 (2020)

    Article  MathSciNet  Google Scholar 

  30. Yokus A., Yavus M.: Novel comparison of numerical and analytical methods for fractional Burger-Fisher equation. Discrete Contin. Dyn. Syst. S (2018)

  31. Yokus, A., Tuz, M., Gungoz, U.: On the exact and numerical complex travelling wave solution to the nonlinear Schrodinger equation. J. Differ. Equ. Appl. 27(2), 195–206 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yokus, A., Kaya, D.: Comparison exact and numerical simulation of the traveling wave solution in nonlinear dynamics. Int. J. Mod. Phys. B 34(29), 2050282 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yokus, A.: On the exact and numerical solutions to the FitzHugh–Nagumo equation. Int. J. Mod. Phys. B. 34(17), 2050149 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rossikhin, A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63(1), 010801 (2009)

    Article  Google Scholar 

  35. Du, M., Wang, Z., Hu, H.: Measuring memory with the order of fractional derivative. Sci. Rep. 3, 3431 (2013)

    Article  Google Scholar 

  36. Lundstrom, B.N., Higgs, M.H., Spain, W.J., Fairhall, A.L.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11(11), 1335–1342 (2008)

    Article  Google Scholar 

  37. Khalil, R., Al-Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jaradat, I., Alquran, M.: Construction of solitary two-wave solutions for a new two-mode version of the Zakharov–Kuznetsov equation. Mathematics 8(7), 1127 (2020)

    Article  Google Scholar 

  39. Jaradat, I., Alquran, M., Ali, M., Al-Ali, N., Momani, S.: Development of spreading symmetric two-waves motion for a family of two-mode nonlinear equations. Heliyon 6(6), e04057 (2020)

    Article  Google Scholar 

  40. Alquran, M., Jaradat, I., Baleanu, D.: Shapes and dynamics of dual-mode Hirota-Satsuma coupled KdV equations: exact traveling wave solutions and analysis. Chin. J. Phys. 58, 49–56 (2019)

    Article  MathSciNet  Google Scholar 

  41. Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2248–2253 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Jaradat, I., Alquran, M., Ali, M.: A numerical study on weak-dissipative two-mode perturbed Burgers’ and Ostrovsky models: right-left moving waves. Eur. Phys. J. Plus 133, 164 (2018)

    Article  Google Scholar 

  43. Alquran, M., Jaradat, I., Ali, M., Baleanu, D.: The dynamics of new dual-mode Kawahara equation: interaction of dual-waves solutions and graphical analysis. Phys. Scr. 95, 045216 (2020)

    Article  Google Scholar 

  44. Alquran, M., Jaradat, I.: Delay-asymptotic solutions for the time-fractional delay-type wave equation. Physica A 527, 121275 (2019)

    Article  MathSciNet  Google Scholar 

  45. Ali, M., Alquran, M., Jaradat, I.: Asymptotic-sequentially solution style for the generalized Caputo time-fractional Newell–Whitehead–Segel system. Adv. Differ. Equ. 2019, 70 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Alquran, M., Jaradat, I., Momani, S., Baleanu, D.: Chaotic and solitonic solutions for a new time-fractional two-mode Korteweg–de Vries equation. Rom. Rep. Phys. 72(3), 117 (2020)

    Google Scholar 

  47. Abu Irwaq, I., Alquran, M., Jaradat, I., Noorani, M.S.M., Momani, S., Baleanu, D.: Numerical investigations on the physical dynamics of the coupled fractional Boussinesq–Burgers system. Rom. J. Phys. 65(5–6), 111 (2020)

    Google Scholar 

  48. El-Ajou, A., Abu, Arqub O., Al-Smadi, M.: A general form of the generalized Taylor’s formula with some applications. Appl. Math. Comput. 256, 851–859 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Komashynska, I., Al-Smadi, M., Abu Arqub, O., Momani, S.: An efficient analytical method for solving singular initial value problems of nonlinear systems. Appl. Math. Inf. Sci. 10(2), 647–656 (2016)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally and read and approved the final version of the manuscript.

Corresponding author

Correspondence to Marwan Alquran.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this manuscript. The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Alquran, M. & Jaradat, I. Explicit and Approximate Solutions for the Conformable-Caputo Time-Fractional Diffusive Predator–Prey Model. Int. J. Appl. Comput. Math 7, 90 (2021). https://doi.org/10.1007/s40819-021-01032-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01032-3

Keywords

Mathematics Subject Classification

Navigation