Skip to main content
Log in

Analytical Study of \((3+1)\)-Dimensional Fractional-Reaction Diffusion Trimolecular Models

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper employs two efficient iterative schemes for solving the \((3+1)\)-dimensional fractional diffusion-reaction trimolecular models also known as Brusselator models which arises in the mathematical modeling of chemical reaction-diffusion processes. This model is a famous model of chemical reactions with oscillations. The two iterative methods used in this study are the q-homotopy analysis method and the fractional reduced differential transform method. These methods produce exact solutions in some special cases. Error estimates are done when the exact solution is known. The effect of the fractional order on the solutions profile of the system considered is investigated. The numerical results obtained show that these iterative methods are competitive, reliable, and powerful for solving strongly nonlinear higher-order differential equation of fractional type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ma, C.Y., Shiri, B., Wu, G.C., Baleanu, D.: New fractional signal smoothing equations with short memory and variable order. Optik 218, 164507 (2020). https://doi.org/10.1016/j.ijleo.2020.164507

    Article  Google Scholar 

  2. Chen, D., Chen, Y., Xue, D.: Three fractional-order TV-models for image de-noising. J. Comput. Inf. Sys. 9, 4773–80 (2013)

    Google Scholar 

  3. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press (2010)

  4. Pu, Y.F.: Fractional differential analysis for texture of digital image. J. Alg. Comput. Technol. 1, 357–80 (2007)

    Article  Google Scholar 

  5. Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    Article  Google Scholar 

  6. Tarasov, V.E., Tarasova, V.V.: Time-dependent fractional dynamics with memory in quantum and economic physics. Ann. Phys. 383, 579–599 (2017)

    Article  MathSciNet  Google Scholar 

  7. Alijani, Z., Baleanu, D., Shiri, B., Wu, G.-C.: Spline collocation methods for systems of fuzzy fractional differential equations. Chaos Solitons Fract. 131, 131,109510 (2020)

    Article  MathSciNet  Google Scholar 

  8. Owusu-Mensah, I., Akinyemi, L., Oduro, B., Iyiola, O.S.: A fractional order approach to modeling and simulations of the novel COVID-19. Adv. Differ. Equ. 2020(1), 1–21 (2020). https://doi.org/10.1186/s13662-020-03141-7

    Article  MathSciNet  Google Scholar 

  9. Dadkhah, E., Ghaffarzadeh, H., Shiri, B., Katebi, J.: Spline collocation methods for seismic analysis of multiple degree of freedom systems with visco-elastic dampers using fractional models. J. Vibr. Contr. 26(17–18), 1445–1462 (2020)

    Article  MathSciNet  Google Scholar 

  10. Shiri, B., Wu, G., Baleanu, D.: Collocation methods for terminal value problems of tempered fractional differential equations. Appl. Numer. Math. 156, 385–395 (2020)

    Article  MathSciNet  Google Scholar 

  11. Baleanu, D., Shiri, B., Srivastava, H.M., Al Qurashi, M.: A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel. Adv. Differ. Equ. 2018, 353 (2018)

    Article  MathSciNet  Google Scholar 

  12. Akinyemi, L., Senol, M., Huseen, S.N.: Modified homotopy methods for generalized fractional perturbed Zakharov-Kuznetsov equation in dusty plasma. Adv. Differ. Equ. 2021, 45 (2021). https://doi.org/10.1186/s13662-020-03208-5

    Article  MathSciNet  Google Scholar 

  13. Akinyemi, L., Senol, M., Iyiola, O.S.: Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method. Math. Comput. Simul. 182, 211–233 (2021). https://doi.org/10.1016/j.matcom.2020.10.017

    Article  MathSciNet  MATH  Google Scholar 

  14. Jajarmi, A., Baleanu, D.: A new iterative method for the numerical solution of high-order non-linear fractional boundary value problems. Front. Phys. 8, 220 (2020). https://doi.org/10.3389/fphy.2020.00220

    Article  Google Scholar 

  15. Rezapour, S., Mohammadi, H., Jajarmi, A.: A new mathematical model for Zika virus transmission. Adv. Differ. Equ. 2020, 589 (2020). https://doi.org/10.1186/s13662-020-03044-7

    Article  MathSciNet  Google Scholar 

  16. Sajjadi, S., Baleanu, D., Jajarmi, A., Mohammadi Pirouz, H.: A new adaptive synchronization and hyperchaos control of a biological snap oscillator. Chaos Solitons Fract. 138, 109919 (2020). https://doi.org/10.1016/j.chaos.2020.109919

    Article  MathSciNet  Google Scholar 

  17. Jajarmi, A., Baleanu, D.: On the fractional optimal control problems with a general derivative operator. Asian J. Control. 1, 1–10 (2019). https://doi.org/10.1002/asjc.2282

    Article  Google Scholar 

  18. Baleanu, D., Ghanbari, B., Asad, J.H., Jajarmi, A., Pirouz, H.M.: Planar system-masses in an equilateral triangle: numerical study within fractional calculus. CMES-Comput. Model. Eng. Sci. 124(3), 953–968 (2020)

    Google Scholar 

  19. Akinyemi, L., Iyiola, O.S.: Exact and approximate solutions of time-fractional models arising from physics via Shehu transform. Math. Meth. Appl. Sci. 1, 1–23 (2020). https://doi.org/10.1002/mma.6484

    Article  MathSciNet  MATH  Google Scholar 

  20. Senol, M.: Analytical and approximate solutions of \((2+1)\)-dimensional time-fractional Burgers–Kadomtsev–Petviashvili equation. Commun. Theor. Phys. 72, 1–11 (2020)

    Article  MathSciNet  Google Scholar 

  21. Akinyemi, L., Iyiola, O.S.: A reliable technique to study nonlinear time-fractional coupled Korteweg-de Vries equations. Adv. Differ. Equ. 2020(169), 1–27 (2020). https://doi.org/10.1186/s13662-020-02625-w

    Article  MathSciNet  Google Scholar 

  22. Baleanu, D., Jajarmi, A., Sajjadi, S.S., Asad, J.H.: The fractional features of a harmonic oscillator with position-dependent mass. Commun. Theor. Phys. 72(5), 055002 (2020)

    Article  MathSciNet  Google Scholar 

  23. Senol, M., Dolapci, I.T.: On the Perturbation-Iteration Algorithm for fractional differential equations. J. King Saud Univ.-Sci. 28(1), 69–74 (2016)

    Article  Google Scholar 

  24. Senol, M., Atpinar, S., Zararsiz, Z., Salahshour, S., Ahmadian, A.: Approximate solution of time-fractional fuzzy partial differential equations. Comput. Appl. Math. 38(1), 1–18 (2019)

    Article  MathSciNet  Google Scholar 

  25. Akinyemi, L., Huseen, S.N.: A powerful approach to study the new modified coupled Korteweg-de Vries system. Math. Comput. Simul. 177, 556–567 (2020). https://doi.org/10.1016/j.matcom.2020.05.021

    Article  MathSciNet  MATH  Google Scholar 

  26. Caputo, M.: Elasticita e Dissipazione Zanichelli, Bologna (1969)

  27. Liao, S.J.: Homotopy analysis method a new analytic method for nonlinear problems Appl. Math. Mech. 19, 957–962 (1998)

    Article  MathSciNet  Google Scholar 

  28. Miller, K.S., Ross, B.: An Introduction to Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  29. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, vol. 198. Academic Press (1998)

  30. Dahiya, S., Mittal, R.C.: A modified cubic B-spline differential quadrature method for three-dimensional non-linear diffusion equations. Open Phys. 15, 453–463 (2017)

    Article  Google Scholar 

  31. Twizell, E.H., Gumel, A.B.: A second-order scheme for the “Brusselator’’ reaction-diffusion system. Q. Cao. J. Math. Chem. 26, 297–316 (1999)

    Article  MathSciNet  Google Scholar 

  32. Adomian, G.: The diffusion-Brusselator equation. Comput. Math. Appl. 29, 1–3 (1995)

    Article  MathSciNet  Google Scholar 

  33. Wazwaz, A.M.: The decomposition method applied to systems of partial differential equations and to the reaction-diffusion Brusselator model. Appl. Math. Comput. 110, 251–264 (2000)

    MathSciNet  MATH  Google Scholar 

  34. Ang, W.T.: The two-dimensional reaction-diffusion Brusselator system: a dual-reciprocity boundary element solution. Eng. Anal. Bound Elem. 27, 897–903 (2003)

    Article  Google Scholar 

  35. Iyiola, O.S.: Exponential Integrator Methods for Nonlinear Fractional Reaction–diffusion Models. Theses and Dissertations 1644, 1 (2017)

    MathSciNet  Google Scholar 

  36. Iyiola, O.S., Wade, B.: Exponential integrator methods for systems of non-linear space-fractional models with super-diffusion processes in pattern formation. Comput. Math. Appl. 75, 3719–3736 (2018)

    Article  MathSciNet  Google Scholar 

  37. Akinyemi, L.: q-Homotopy analysis method for solving the seventh-order time-fractional Lax’s Korteweg-de Vries and Sawada-Kotera equations. Comp. Appl. Math. 38, 1–22 (2019)

    Article  MathSciNet  Google Scholar 

  38. Akinyemi, L., Iyiola, O.S., Akpan, U.: Iterative methods for solving fourth- and sixth order time-fractional Cahn–Hillard equation. Math. Meth Appl. Sci. 43, 4050–4074 (2020). https://doi.org/10.1002/mma.6173

    Article  MathSciNet  MATH  Google Scholar 

  39. El-Tawil, M.A., Huseen, S.N.: The Q-homotopy analysis method (Q-HAM). Int. J. Appl. Math. Mech. 8, 51–75 (2012)

    Google Scholar 

  40. El-Tawil, M.A., Huseen, S.N.: On convergence of the q-homotopy analysis method. Int. J. Contemp. Math Sci. 8, 481–497 (2013)

    Article  MathSciNet  Google Scholar 

  41. Iyiola, O.S., Soh, M.E., Enyi, C.D.: Generalised homotopy analysis method (q-HAM) for solving foam drainage equation of time fractional type. Math. Eng. Sci. Aerospace 4, 105 (2013)

    MATH  Google Scholar 

  42. Iyiola, O.S.: Exact and approximate solutions of fractional diffusion equations with fractional reaction terms. Progr. Fract. Differ. Appl. 2, 21–30 (2016)

    Google Scholar 

  43. Iyiola, O.S., Zaman, F.: A note on analytical solutions of nonlinear fractional 2D heat equation with non-local integral terms. Pramana -J. Phys. 87, 51 (2016)

    Article  Google Scholar 

  44. Şenol, M., Iyiola, O.S., Daei Kasmaei, H., Akinyemi, L.: Efficient analytical techniques for solving time-fractional nonlinear coupled Jaulent-Miodek system with energy-dependent Schrödinger potential. Adv Differ Equ. 2019, 1–21 (2019). https://doi.org/10.1186/s13662-019-2397-5

    Article  Google Scholar 

  45. Keskin, Y., Oturanc, G.: Reduced differential transform method: a new approach to fractional partial differential equations. Nonlinear Sci. Lett. A 1, 61–72 (2010)

    MATH  Google Scholar 

  46. Luchko, Y.F., Srivastava, H.M.: The exact solution of certain differential equations of fractional order by using operational calculus. Comput. Math. Appl. 29, 73–85 (1995)

    Article  MathSciNet  Google Scholar 

  47. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, the Netherlands (2006)

  48. Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004)

    MathSciNet  MATH  Google Scholar 

  49. Liao, S.J.: An approximate solution technique not depending on small parameters: a special example. Int. J. Non-linear Mech. 30, 371–380 (1995)

    Article  MathSciNet  Google Scholar 

  50. Akinyemi, L.: A fractional analysis of Noyes-Field model for the nonlinear Belousov–Zhabotinsky reaction. Comp. Appl. Math. 39, 1–34 (2020). https://doi.org/10.1007/s40314-020-01212-9

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanre Akinyemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinyemi, L., Iyiola, O.S. Analytical Study of \((3+1)\)-Dimensional Fractional-Reaction Diffusion Trimolecular Models. Int. J. Appl. Comput. Math 7, 92 (2021). https://doi.org/10.1007/s40819-021-01039-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01039-w

Keywords

Mathematics Subject Classification

Navigation