Skip to main content
Log in

On the Frequency-Amplitude Formulation for Nonlinear Oscillators with General Initial Conditions

  • Short Communication
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper extends the frequency-amplitude formulation to solve nonlinear conservative oscillators with general initial conditions. The obtained result is exactly as that by the Hamiltonian approach. As the solution process is extremely simple, this method can be used for fast insight of periodic properties of a nonlinear vibration system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. He, J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20(10), 1141–1199 (2006)

    Article  MathSciNet  Google Scholar 

  2. He, C.H., Wang, J.H., Yao, S.W.: A complement to period/frequency estimation of a nonlinear oscillator. J. Low Freq. Noise Vib Active Control 38(3–4), 992–995 (2019)

    Article  Google Scholar 

  3. He, C.H., He, J.H., Sedighi, H.M., Fangzhu, N.: an ancient Chinese nanotechnology for water collection from air: history, mathematical insight, promises and challenges. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6384

    Article  Google Scholar 

  4. He, J.H.: Variational principle and periodic solution of the Kundu–Mukherjee–Naskar equation. Results Phys. 17, 103031 (2020)

    Article  Google Scholar 

  5. He, J.H., Jin, X.: A short review on analytical methods for the capillary oscillator in a nanoscale deformable tube. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6321

    Article  Google Scholar 

  6. Liu, C.X.: A short remark on He’s frequency formulation. J. Low Freq. Noise Vib Active Control (2020). https://doi.org/10.1177/1461348420926331

    Article  Google Scholar 

  7. Ren, Z.Y.: The frequency-amplitude formulation with omega(4) for fast insight into a nonlinear oscillator. Results Phys. 11, 1052–1053 (2018)

    Article  Google Scholar 

  8. Ren, Z.F., Hu, G.F.: He’s frequency-amplitude formulation with average residuals for nonlinear oscillators. J. Low Freq. Noise Vib Active Control 38(3–4), 1050–1059 (2019)

    Article  Google Scholar 

  9. Ren, Z.F., Hu, G.F.: Discussion on the accuracies of He’s frequency-amplitude formulation and its modification with average residuals. J. Low Freq. Noise Vib Active Control 38(3–4), 1713–1715 (2019)

    Article  Google Scholar 

  10. Ren, Z.F., Wu, J.B.: He’s frequency-amplitude formulation for nonlinear oscillator with damping. J. Low Freq. Noise Vib Active Control 38(3–4), 1045–1049 (2019)

    Article  Google Scholar 

  11. Tian, D., Liu, Z.: Period/frequency estimation of a nonlinear oscillator. J. Low Freq. Noise Vib Active Control 38(3–4), 1629–1634 (2019)

    Article  Google Scholar 

  12. Tao, Z.L., Chen, G.H., Bai, K.X.: Approximate frequency–amplitude relationship for a singular oscillator. J. Low Freq. Noise Vib Active Control 38(3–4), 1036–1040 (2019)

    Article  Google Scholar 

  13. Wang, Q.L., Shi, X.Y., Li, Z.B.: A short remark on Ren-Hu’s modification of He’s frequency-amplitude formulation and the temperature oscillation in a polar bear hair. J. Low Freq. Noise Vib Active Control 38(3–4), 1374–1377 (2019)

    Article  Google Scholar 

  14. Wu, Y., Liu, Y.P.: Residual calculation in He’s frequency–amplitude formulation. J. Low Freq. Noise Vib Active Control (2020). https://doi.org/10.1177/1461348420913662

    Article  Google Scholar 

  15. He, C.-H., Liu, C., He, J.-H., Shirazi, A.H., Sedighi, H.M.: Passive atmospheric water harvesting utilizing an ancient Chinese ink slab. Facta Universitatis-Series Mech. Eng. (2021). https://doi.org/10.22190/FUME201203001H

    Article  Google Scholar 

  16. He, J.H.: Amplitude-frequency relationship for conservative nonlinear oscillators with odd nonlinearities. Int. J. Appl. Comput. Math 3, 1557–1560 (2017). https://doi.org/10.1007/s40819-016-0160-0

    Article  MathSciNet  MATH  Google Scholar 

  17. He, J.H.: The simpler, the better: analytical methods for nonlinear oscillators and fractional oscillators. J. Low Freq. Noise Vib Active Control 38(3–4), 1252–1260 (2019)

    Article  Google Scholar 

  18. He, J.H.: The simplest approach to nonlinear oscillators. Results Phys. 15, 102546 (2019)

    Article  Google Scholar 

  19. Na, Q., Wei-Fan, H., Ji-Huan, H.: The fastest insight into the large amplitude vibration of a string. Rep Mech Eng 2(1), 1–5 (2020). https://doi.org/10.31181/rme200102001q

    Article  Google Scholar 

  20. He, J.-H., Hou, W.-F., Qie, N., Gepreel, K.A., Shirazi, A.H., Sedighi, H.M.: Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators. Facta Universitatis-Series Mech. Eng. (2021). https://doi.org/10.22190/FUME201205002H

    Article  Google Scholar 

  21. Ji-Huan, H., Yusry, O.E.-D.: The reducing rank method to solve third-order Duffing equation with the homotopy perturbation. Numer. Methods Partial Differ. Eq. (2020). https://doi.org/10.1002/num.22609

    Article  Google Scholar 

  22. Navarro, H.A., Cveticanin, L.: Extension of the Hamiltonian approach with general initial conditions. J. Theor. Appl. Mech. 56(1), 255–267 (2018)

    Article  Google Scholar 

  23. He, J.H., Kou, S.J., He, C.H., et al.: Fractal oscillation and its frequency-amplitude property. Fractals (2021). https://doi.org/10.1142/S0218348X2150105X

    Article  Google Scholar 

  24. Zuo, Y.-T.: A gecko-like fractal receptor of a three-dimensional printing technology: a fractal oscillator. J. Math. Chem. (2021). https://doi.org/10.1007/s10910-021-01212-y

    Article  MATH  Google Scholar 

  25. He, J.H.: Seeing with a single scale is always unbelieving: from magic to two-scale fractal. Therm. Sci. 25(2B):1217–1219 (2021). https://doi.org/10.2298/TSCI2102217H

  26. He, J.H., Qie, N., He, C.H.: Solitary waves travelling along an unsmooth boundary. Results Phys. 24, 104104 (2021)

  27. He, C.H., Liu, C., Gepreel, K.A.: Low frequency property of a fractal vibration model for a concrete beam. Fractals (2021). https://doi.org/10.1142/S0218348X21501176

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Huan He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, JH. On the Frequency-Amplitude Formulation for Nonlinear Oscillators with General Initial Conditions. Int. J. Appl. Comput. Math 7, 111 (2021). https://doi.org/10.1007/s40819-021-01046-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01046-x

Keywords

Navigation