Skip to main content
Log in

Strong Shock Waves in a Dusty-Gas Atmosphere Under Isothermal Conditions: A Power Series Solution

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a study concerning strong plane and cylindrically symmetric shock waves in a dusty gas atmosphere under isothermal condition has been performed, by taking into account the power series expansion method. The flow medium is assumed to be a mixture of perfect gas and small solid particles. The governing equation and associated boundary conditions are non-dimentionlized using a similarity transformation, and are hence expanded as a power series in \({\mathrm{M}}^{-2}\), where \(\mathrm{M}\) is the upstream mach number. Runga-Kutta method of order four has been used to obtain a numerical solution. The effect of (i) geometry factor and (ii) dust loading parameters on the flow variables behind the shock front has been studied in detail and their behaviour in flow field is illustrated via figures. It has been observed that the in the flow field region the quantity \({\mathrm{J}}_{0}\) increases with increase in \(\mathrm{G}\) (the ratio of density of solid particles to the initial density of perfect gas) while it decreases with increment in \({\upkappa }_{\mathrm{p}}\) (mass concentration of solid particles) and \(\mathrm{j}\) (geometry factor). Hence, \({\upkappa }_{\mathrm{p}}\) has a decaying effect on shock wave, whereas the shock grows with increment in \(\mathrm{G}\) and \(\mathrm{j}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a a :

Speed of sound ahead of shock wave

\(a_{{isoth.}}^{2}\) :

Isothermal speed of sound

c sp :

Specific heat of solid particles

c v :

Specific heat of the gas at constant volume

c p :

Specific heat of the gas at constant pressure

c pm :

Specific heat of the mixture constant pressure

c vm :

Specific heat of the mixture constant volume

E j :

Energy carried by the shock

e :

Internal energy of the mixture

e a :

Internal energy at the initial stage

f :

Non-dimensional velocity

G :

Ratio of density of solid particles to that of perfect gas

g :

Non-dimensional pressure

h :

Non-dimensional density

J :

Energy integral

j :

Geometry factor

M :

Upstream Mach number

m :

Mass

m sp :

Total mass of solid particles

p :

Pressure in the flow field

p a :

Pressure of mixture at initial stage

R i :

Gas constant

r :

Space coordinate

r n :

Position of shock front

T :

Temperature in the flow field

t :

Time coordinate

u :

Velocity component in radial direction

V :

Volume

V a :

Volume of the mixture at initial stage

V sp :

Volumetric extension of the solid particles

W s :

Velocity of shock propagation

x :

Similarity variable (non-dimensional variable)

y :

Reciprocal of square of Mach number (non-dimensional variable)

Z :

Volume fraction of solid particles

Z a :

Volume fraction of solid particles at initial stage

βsp :

Ratio of specific heat of solid particles

γ:

Ratio of specific heat of gas

Γ:

Ratio of specific heat of mixture

δ :

Abbreviation

Θ:

Non-dimensional temperature

κ p :

Mass concentration of solid particles

λ :

Shock decay parameter

ρ :

Density of the mixture

ρ a :

Density of the mixture at initial stage

ρ sp :

Species density of solid particles

τ :

Isothermal compressibility

References

  1. Zeldovich, I.B., Raizer, I.P.: Physics of Shock Waves and High Temperature Hydrodynamic Phenomenon. Academic Press, New York (1968)

    Google Scholar 

  2. Taylor, G.I.: The formation of blast wave by very intense explosion I, theoretical discussion. Proc. R. Soc. Lond. A201, 159–174 (1950)

    MATH  Google Scholar 

  3. Sedov, L.I.: Propagation of strong shock waves. J. App. Math. Mech. 10, 241–250 (1946)

    Google Scholar 

  4. Miura, H., Glass, I.I.: On the passage of a shock wave through a dusty-gas layer. Proc. R. Soc. Lond. A385, 85–105 (1983)

    Google Scholar 

  5. Suzuki, T., Higashino, F.: The effect of particles on blast waves in a dusty gas. Z. Naturforsch 35, 1330–1336 (1980)

    Article  Google Scholar 

  6. Gretler, W., Regenfelder, R.: Strong shock waves generated by piston moving in a dust-laden gas under isothermal conditions. Eur. J. Mech. B/Fluid 24, 205–218 (2005)

    Article  Google Scholar 

  7. Vishwakarma, J.P., Nath, G.: Similarity solution for unsteady flow behind an exponential shock in a dusty gas. Phys. Scripta 74, 493–498 (2006)

    Article  MathSciNet  Google Scholar 

  8. Vishwakarma, J.P., Nath, G.: A self-similar solution of a shock propagation in a mixture of a non-ideal gas and small solid particles. Meccanica 44, 239–254 (2009)

    Article  Google Scholar 

  9. Vishwakarma, J.P., Nath, G.: Propagation of a strong spherical shock wave in a gravitating or non-gravitating with exponentially varying density. Acta Astronaut. 123, 200–212 (2016)

    Article  Google Scholar 

  10. Nath, G.: Flow behind an exponential shock in a rotational axisymmetric mixture of non-ideal gas and small solid particles with heat conduction and radiation heat flux. Acta Astronaut. 148, 355–368 (2018)

    Article  Google Scholar 

  11. Vishwakarma, J.P., Nath, G., Singh, K.K.: Propagation of shock waves in a dusty gas with heat conduction, radiation Heat Flux and exponentially varying density. Phys. Scripta 78, 1–11 (2008)

    Article  MathSciNet  Google Scholar 

  12. Miura, H.: Decay of shock waves in a dusty-gas shock tube. Fluid Dyn. Res. 6, 251–259 (1990)

    Article  Google Scholar 

  13. Anisimov, S.I., Spiner, O.M.: Motion of an almost ideal-gas in the presence of a strong point explosion. J. Appl. Math. Mech. 36, 883–887 (1972)

    Article  Google Scholar 

  14. Chaturvedi, R.K., Gupta, P., Singh, L.P.: Evolution of weak shock waves in a two-dimensional steady supersonic flow in dusty gas. Acta Astronaut. 160, 552–557 (2019)

    Article  Google Scholar 

  15. Wu, C.C., Roberts, P.H.: Structure and stability of spherical implosions. Phys. Lett. A 213, 59–64 (1996)

    Article  Google Scholar 

  16. Nath, G.: Propagation of a cylindrical shock wave in a rotational axisymmetric isothermal flow of a non-ideal gas in magnetogasdynamics. Ain Shams Eng. J. 3, 393–401 (2012)

    Article  Google Scholar 

  17. Nath, G.: Self-similar flow of a rotating dusty-gas behind the shock wave with increasing energy, conduction and radiation heat flux. Adv. Space Res. 49, 108–120 (2012)

    Article  Google Scholar 

  18. Hosseinzadeh, K., Roghani, S., Mogharrebi, A.R., Asadi, A., Waqas, M., Ganji, D.D.: Investigation of cross-fluid flow containing motile gyrotactic microorganisms and nanoparticles over a three-dimensional cylinder. Alex. Eng. J. 59, 3297–3307 (2020)

    Article  Google Scholar 

  19. Hosseinzadeh, K., Roghani, S., Mogharrebi, A.R., Asadi, A., Ganji, D.D.: Optimization of hybrid nanoparticles with mixture fluid flow in an octagonal porous medium by effect of radiation and magnetic field. J. Therm. Anal. Calorim. 143, 1413–1424 (2021)

    Article  Google Scholar 

  20. Ardahaie, S.S., Amiri, A.J., Amouei, A., Hosseinzadeh, K., Ganji, D.D.: Investigating the effect of adding nanoparticles to the blood flow in presence of magnetic field in a porous blood arterial. Inform. Med. Unlocked 10, 71–81 (2018)

    Article  Google Scholar 

  21. Sakuai, A.: On propagation and structure of blast waves I. J. Phys. Soc. Jpn 8, 662–669 (1953)

    Article  MathSciNet  Google Scholar 

  22. Sakuai, A.: On propagation and structure of blast waves II. J. Phys. Soc. Jpn 9, 256–266 (1954)

    Article  MathSciNet  Google Scholar 

  23. Takahashi, S.: An existence theorem for the point source blast wave equation. Commun. Part. Diff. Eq. 34, 1–23 (2009)

    Article  MathSciNet  Google Scholar 

  24. Siddiqui, M.J., Arora, R., Kumar, A.: Shock waves propagation under the influence of magnetic field. Chaos Solitons Fract. 97, 66–74 (2017)

    Article  MathSciNet  Google Scholar 

  25. Anand, R. K.: On the strong spherical shock waves in a two-phase gas-particle medium. Int. J. Appl. Comput. Math. 4(49), 1–14 (2018). https://doi.org/10.1007/s40819-018-0482-1

    Article  MathSciNet  Google Scholar 

  26. Levin, V.A., Zhuravskaya, T.A.: Propagation of converging and diverging shock waves under isothermal conditions. Shock Waves 6, 53–75 (1996)

    Article  Google Scholar 

  27. Gretler, W., Regenfelder, R.: Similarity solution for laser-driven shock waves in a dust-laden gas with internal heat transfer effects. Fluid Dyn. Res. 30, 239–313 (2002)

    Article  Google Scholar 

  28. Sachdev, P.L., Ashraf, S.: Converging spherical and cylindrical shocks with zero temperature gradient in the rear flow field. J. Appl. Maths. Phys. (ZAMP) 22, 1095–1102 (1971)

    Article  Google Scholar 

  29. Lerch, I.: Mathematical theory of one-dimensional isothermal blast waves in magnetic field. Aust. J. Phys. 32, 491–502 (1979)

    Article  MathSciNet  Google Scholar 

  30. Lerch, I.: Mathematical theory of cylindrical isothermal blast waves in magnetic field. Aust. J. Phys. 34, 279–301 (1981)

    Article  MathSciNet  Google Scholar 

  31. Pai, S.I., Menon, S., Fan, Z.Q.: Similarity solution of a strong shock wave propagation in a mixture of gas and dusty particles. Int. J. Eng. Sci. 18, 1365–1373 (1980)

    Article  Google Scholar 

  32. Geng, J.H., Groenig, H.: Dust suspensions accelerated by shock waves. Exp. Fluids 28, 360–367 (2000)

    Article  Google Scholar 

  33. Gretler, W., Regenfelder, R.: Variable-energy blast waves generated by a piston moving in a dusty gas. J. Eng. Math. 52, 321–336 (2005)

    Article  MathSciNet  Google Scholar 

  34. Anand, R.K.: On dynamics of imploding shock waves in a mixture of gas and dust particles. Int. J. Non Linear Mech. 65, 88–97 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The first and third authors acknowledge NIT, Uttarakhand for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danish Amin.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, D., Singh, D.B. & Vats, V.K. Strong Shock Waves in a Dusty-Gas Atmosphere Under Isothermal Conditions: A Power Series Solution. Int. J. Appl. Comput. Math 7, 174 (2021). https://doi.org/10.1007/s40819-021-01111-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01111-5

Keywords

Navigation